Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )
a. Vì I là trung điểm của AC \(\Rightarrow\) OI \(\perp\) AC ( quan hệ giữa đk và dây )
hay KI \(\perp\) AC
Xét tứ giác CIKH có: góc KIC + góc KHC = 90o + 90o = 180o ( tổng 2 góc đối = 180o )
\(\Rightarrow\) tứ giác CIKH nội tiếp ( đpcm )
b. Ta có: góc CBD = góc CAD ( 2 góc nội tiếp cùng chắn cung DC ) (1)
Xét \(\Delta\) AKC có: KI là đường trung tuyến đồng thời là đường cao
\(\Rightarrow\) \(\Delta\) AKC là tam giác cân tại K \(\Rightarrow\) góc CAK = góc ACK
hay góc CAD = góc ACK (2)
Từ (1), (2) \(\Rightarrow\) góc ACK = góc CBD ( đpcm )