K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại Ha) Chứng minh rằng H làtrung điểm của đoaṇ thẳng BCb) Tính độ dài đoạn thẳng AHc) Kẻ HI AB taị I và HK  AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ làtrung điểmcủa HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?d) Chứng minh AH là đường trung trực của đoạn thẳng DE .e) Tìm điều kiện của tam giác...
Đọc tiếp

 

Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại H
a) Chứng minh rằng H là

trung điểm của đoaṇ thẳng BC

b) Tính độ dài đoạn thẳng AH
c) Kẻ HI AB taị I và HK  AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ là

trung điểm

của HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?
d) Chứng minh AH là đường trung trực của đoạn thẳng DE .
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE

Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại H
a) Chứng minh rằng H là

trung điểm của đoaṇ thẳng BC

b) Tính độ dài đoạn thẳng AH
c) Kẻ HI AB taị I và HK  AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ là

trung điểm

của HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?
d) Chứng minh AH là đường trung trực của đoạn thẳng DE .
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE

0
DD
28 tháng 3 2021

Bạn tự vẽ hình nhé. 

a) Xét tam giác \(ABM\)và tam giác \(NBM\)có: 

\(\widehat{MAB}=\widehat{MNB}\left(=90^o\right)\)

\(MB\)cạnh chung

\(\widehat{MBA}=\widehat{MBN}\)(vì \(BM\)là tia phân giác \(\widehat{ABN}\))

suy ra \(\Delta ABM=\Delta NBM\)(cạnh huyền - góc nhọn)

\(\Rightarrow\widehat{AMB}=\widehat{NMB}\)(Hai góc tương ứng) 

suy ra \(MB\)là tia phân giác góc \(AMN\).

b) Vì \(NK//BM\)nên \(\widehat{BMN}=\widehat{MNK}\)(hai góc so le trong) 

và \(\widehat{BMA}=\widehat{NKM}\)(Hai góc đồng vị) 

mà \(\widehat{AMB}=\widehat{NMB}\)(theo a)) 

suy ra \(\widehat{MNK}=\widehat{NKM}\)suy ra tam giác \(MNK\)cân tại \(M\).

c) Vì \(\Delta ABM=\Delta NBM\)nên

+) \(MN=MA\)(Hai cạnh tương ứng) suy ra \(M\)thuộc đường trung trực của \(AN\).

+) \(BN=BA\)(Hai cạnh tương ứng) suy ra \(B\)thuộc đường trung trực của \(AN\).

suy ra \(BM\)là đường trung trực của \(AN\)\(\Rightarrow BM\perp AN\).

mà \(NK//BM\)suy ra \(AN\perp NK\).

Trong tam giác vuông \(ANK\)\(AN< AK\)(cạnh góc huyền lớn hơn cạnh góc vuông).

d) \(K\)là trung điểm \(MC\)suy ra \(MK=\frac{1}{2}MC\)mà \(MN=MK\)(do tam giác \(MNK\)cân tại \(M\))

suy ra \(MN=\frac{1}{2}MC\).

Trong tam giác vuông, cạnh góc vuông bằng \(\frac{1}{2}\)cạnh huyền thì góc đối diện với cạnh góc vuông đó bằng \(30^o\).

Do đó \(\widehat{C}=30^o\).

Vậy tam giác vuông \(ABC\)cần thêm điều kiện \(\widehat{C}=30^o\).

a) Xét tứ giác AEMF có

\(\widehat{EAF}=90^0\)(gt)

\(\widehat{AEM}=90^0\)(gt)

\(\widehat{AFM}=90^0\)(gt)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Xét ΔABC có

M là trung điểm của BC(gt)

MF//AB(cùng vuông góc với AC)

Do đó: F là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

F là trung điểm của AC(cmt)

Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà AE=MF(AFME là hình chữ nhật)

nên \(AE=\dfrac{AB}{2}\)

mà A,E,B thẳng hàng(gt)

nên E là trung điểm của AB

Ta có: F là trung điểm của NM(gt)

nên \(MN=2\cdot MF\)(1)

Ta có: E là trung điểm của AB(cmt)

nên AB=2AE(2)

Ta có: AEMF là hình chữ nhật(cmt)

nên MF=AE(Hai cạnh đối)(3)

Từ (1), (2) và (3) suy ra MN=AB

Xét tứ giác ABMN có 

MN//AB(cùng vuông góc với AC)

MN=AB(cmt)

Do đó: ABMN là hình bình hành(Dấu hiệu nhận biết hình bình hành)