Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm hai đường chéo, MQ cắt AC ở H và MN cắt BD ở I. Ta có H và I là trung điểm OA và OB ta có:
Dien h AOM = BOM = ½ AOB
Dien h OHM = HAM = ½ AOM
Dien h OMI = BMI = ½ OMB
=> Dien h OHMI = ½ OAB
Tuong tu các cặp tam giác khác rồi cộng lại
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC
Bài này ko khó lắm đâu. Bạn chỉ cần nghĩ một chút thôi.
a,Nối A với C.
Xét tam giác BAC có: M là trung điểm của AB, N là trung điểm của BC
Suy ra: MN là đường trung bình của tam giác BAC
Nên MN song song với BC.(1)
Xét tam giác ACD có: P là trung điểm của CD và Q là trung điểm của AD.
Do đó: PQ là đường trung bình của tam giác ACD
Nên PQ song song với BC. (2)
Từ (1) và (2), ta có: MN song song với PQ.
b, Xét tam giác MQP có: I là trung điểm của MQ, K là trung điểm của MP
Vì thế IK là đường trung bình của tam giác MQP
Suy ra: IK song song với PQ.
Tương tự, KH là đường trung bình của tam giác MNP
Nên KH song song với MN.
Mà MN song song với PQ
Do đó: KH song song với PQ
Qua điểm K nằm ngoài đường thẳng PQ, có 2 đường thẳng IK,KH cùng song song với PQ nên theo tiên đề Ơclít , 3 điểm I,K,H thẳng hàng.
Chúc bạn học tốt.
a) Xét ΔABC có M , N là trđ AB , BC (gt)
=> MN là đường tb ΔABC
=> MN // AC ; MN = \(\frac{AC}{2}\) (đ/l) (1)
b) Xét ΔADC có P , Q là trđ CD , AD (gt)
=> PQ là đường tb ΔADC
=> PQ // AC ; PQ = \(\frac{AC}{2}\) (đ/l) (2)
Từ (1) và (2) ta có \(\left\{{}\begin{matrix}MN//PQ\\MN=PQ\end{matrix}\right.\)
=> Tứ giác MNPQ là hbh
c) Do MNPQ là hbh (cmt) nên MQ = NP
xin lỗi chưa giải xong đã bấm lộn