K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

a,  11n+2+122n+1

= 11n.121+12.122n

= 11n.(133-12)+12.122n

= 11n.133-11nn .12+12.122n

=12.(144n-11n)+11n. 133

Có 144nn-11n \(⋮\)144-11=133

11n.133\(⋮\)133

=> dpcm

AH
Akai Haruma
Giáo viên
5 tháng 10 2017

Lời giải:

a)

\(A=11^{n+2}+12^{2n+1}\)

Ta thấy \(12^2\equiv 11\pmod {133}\Rightarrow 12^{2n+1}\equiv 11^n.12\pmod {133}\)

Do đó \(A=11^{n+2}+12^{2n+1}\equiv 11^{n+2}+11^n.12\pmod {133}\)

\(\Leftrightarrow A\equiv 11^n(11^2+12)\equiv 11^n.133\equiv 0\pmod {133}\)

Vậy \(A\vdots 133\) (đpcm)

b) Đề bài không rõ

c)

Ta thấy: \(5^{2}=25\equiv 6\pmod {19}\)

\(\Rightarrow 7.5^{2n}\equiv 7.6^n\pmod {19}\)

\(\Rightarrow 7.5^{2n}+12.6^n\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)

Vậy \(7.5^{2n}+12.6^n\vdots 19\) (đpcm)

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

26 tháng 7 2020

a, 7 . 52n + 12 . 6n 

= 7 . (52)n - 7 . 6n + 19 . 6n

= 7 . (25n - 6n) + 19 . 6n

= 7 . (25 - 6) . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n

= 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n

Vì 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) ⋮ 19 và 19 . 6n ⋮ 19

=> 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n ⋮ 19

=> 7 . 52n + 12 . 6n ⋮ 19

b, 11n + 2 + 122n + 1 

= 121 . 11n + 144n . 12

= 133 . 11n - 12 . 11+ 144n . 12

= 133 . 11n + 12(144n - 11n

= 133 . 11n + 12 . (144 - 11) . (144n - 1 - 144n - 2 . 11 + .... - 11n)

= 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n)

Vì 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133 và 133 . 11n ⋮ 133

=> 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133

=> 11n + 2 + 122n + 1 ⋮ 133

18 tháng 9 2020

          Bài làm :

a) 7 . 52n + 12 . 6n 

= 7 . (52)n - 7 . 6n + 19 . 6n

= 7 . (25n - 6n) + 19 . 6n

= 7 . (25 - 6) . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n

= 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n

Vì 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) ⋮ 19 và 19 . 6n ⋮ 19

=> 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n ⋮ 19

=> Điều phải chứng minh

b) 11n + 2 + 122n + 1 

= 121 . 11n + 144n . 12

= 133 . 11n - 12 . 11+ 144n . 12

= 133 . 11n + 12(144n - 11n

= 133 . 11n + 12 . (144 - 11) . (144n - 1 - 144n - 2 . 11 + .... - 11n)

= 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n)

Vì 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133 và 133 . 11n ⋮ 133

=> 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133

=> Điều phải chứng minh