K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\left(đpcm\right)\)

10 tháng 10 2021

Thay b2 = ac vào biểu thức trên, ta có:

\(\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)

\(\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)

Đề bài là gì vậy bn ?

Chọn C

Theo tính chất của tỉ lệ thức

`a/b=c/d -> a*d=b*c`

Xét các đ/án trên `-> C.`

3 tháng 4 2022

\(a,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{b^2+c^2}\left(1\right)\)

Mà \(\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\Leftrightarrow\dfrac{a}{b}=\dfrac{c^2}{b^2}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\tođpcm\)

\(b,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\)

\(\Leftrightarrow\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{\left(b-a\right)\left(b+a\right)}{a^2+ab}=\dfrac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\left(đpcm\right)\)

7 tháng 12 2018

10. a) Ta có : (a + b)2 + (a – b)2 = 2(a2 + b2). Do (a – b)\(^2\) ≥ 0, nên (a + b)\(^2\) ≤ 2(a2 + b2).

b) Xét : (a + b + c)\(^2\) + (a – b)\(^2\) + (a – c)\(^2\) + (b – c)\(^2\)

. Khai triển và rút gọn, ta được : 3(a\(^2\) + b\(^2\) + c\(^2\)).

Vậy : (a + b + c)\(^2\) ≤  3( a\(^2\) + b\(^2\) + c\(^2\)).

7 tháng 12 2018

Cách khác : Biến đổi tương đương

a, \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)luôn đúng

b, \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\le3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)

7 tháng 2 2022

\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\left(1\right)\)

\(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2adbc+b^2c^2=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(VP=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

Ta thấy: \(VT=VP\)

\(\Rightarrow\left(1\right)\) luôn đúng.

12 tháng 1 2022

\(\dfrac{a}{b}=\dfrac{b}{c}\Rightarrow ac=b^2\)

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)

Đề thiếu rồi bạn