Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x-1}+\sqrt{2x-1}=5\)
\(\Leftrightarrow3x-2+2\sqrt{\left(x-1\right)\left(2x-1\right)}=25\)
\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(2x-1\right)}=25-3x+2\)
\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(2x-1\right)}=-3x+27\)
Bình phương 2 vế, ta được:
\(\Leftrightarrow4\left(x-1\right)\left(2x-1\right)=9\left(x-9\right)^2\)
\(\Leftrightarrow8x^2-4x-8x+4=9x^2-162x+729\)
\(\Leftrightarrow8x^2-12x+4-9x^2+162x-729=0\)
\(\Leftrightarrow-x^2+150x-725=0\)
\(\Leftrightarrow x^2-150x+725=0\)
\(\Leftrightarrow\left(x-145\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-145=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=145\left(ktm\right)\\x=5\left(tm\right)\end{cases}}\)
\(\Rightarrow x=5\)
b) \(x+\sqrt{2x-1}-2=0\)
\(\Leftrightarrow\sqrt{2x-1}=2-x\)
Bình phương 2 vế, ta được:
\(\Leftrightarrow2x-1=4-4x^2+x^2=0\)
\(\Leftrightarrow2x-1-4+4x-x^2=0\)
\(\Leftrightarrow6x-5-x^2=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
a.
\(A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{9}}\)
\(=\frac{\sqrt{3}-\sqrt{1}}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+\frac{\sqrt{7}-\sqrt{5}}{7-5}+\frac{\sqrt{9}-\sqrt{7}}{9-7}\)
\(=\frac{\sqrt{9}-\sqrt{7}+\sqrt{7}-\sqrt{5}+\sqrt{5}-\sqrt{3}+\sqrt{3}-\sqrt{1}}{2}\)
\(=\frac{3-1}{2}=1\)
b.
\(B=2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
\(=2\sqrt{80\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}\)
\(=8\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}=0\)
c.
\(C=\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}-\sqrt{6}\)
\(=\frac{15\sqrt{6}-15}{6-1}+\frac{4\sqrt{6}+8}{6-4}-\frac{36+12\sqrt{6}}{9-6}-\sqrt{6}\)
\(=\frac{15\sqrt{6}-15}{5}+\frac{4\sqrt{6}+8}{2}-\frac{36+12\sqrt{6}}{3}-\sqrt{6}\)
\(=3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}-\sqrt{6}\)
\(=-11\)
d)D=\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)( \(x\ge2\))
=\(\sqrt{x+2\sqrt{2}.\sqrt{x-2}}+\sqrt{x-2\sqrt{2}.\sqrt{x-2}}\)
=\(\sqrt{\left(x-2\right)+2\sqrt{2}.\sqrt{x-2}+2}+\sqrt{\left(x-2\right)-2\sqrt{2}.\sqrt{x-2}+2}\)
=\(\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
=\(\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)(1)
TH1: \(2\le x\le4\)
Từ (1)<=> \(\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}\)
=\(2\sqrt{2}\)
TH2. x\(>4\)
Từ (1) <=> \(\sqrt{x-2}+\sqrt{2}-\sqrt{2}+\sqrt{x-2}\)=\(2\sqrt{x-2}\)
Vậy \(\left[{}\begin{matrix}2\le x\le4\\x>4\end{matrix}\right.< =>\left[{}\begin{matrix}D=2\sqrt{2}\\D=2\sqrt{x-2}\end{matrix}\right.\)
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(-\sqrt{7}-\sqrt{5}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\frac{\sqrt{5}-\sqrt{7}}{\sqrt{7}+\sqrt{5}}=\frac{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{7}+\sqrt{5}\right)^2}=\frac{2}{12+2\sqrt{35}}\)
\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+3\right)}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{8-2\sqrt{15}}{2}+\frac{8+2\sqrt{15}}{2}-\frac{\left(\sqrt{5}+1\right)^2}{4}=8-\frac{6+2\sqrt{5}}{4}=\frac{26-2\sqrt{5}}{4}\)
Bài 1: Tính
a) Ta có: \(\frac{\sqrt{6+\sqrt{11}}-\sqrt{7-\sqrt{33}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{12+2\sqrt{11}}-\sqrt{14-2\sqrt{33}}}{\sqrt{12}+2}\)
\(=\frac{\sqrt{11+2\cdot\sqrt{11}\cdot1+1}-\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{3}+3}}{2\sqrt{3}+2}\)
\(=\frac{\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}}{2\sqrt{3}+2}\)
\(=\frac{\left|\sqrt{11}+1\right|-\left|\sqrt{11}-\sqrt{3}\right|}{2\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{11}+1-\left(\sqrt{11}-\sqrt{3}\right)}{2\left(1+\sqrt{3}\right)}\)(Vì \(\left\{{}\begin{matrix}\sqrt{11}>1>0\\\sqrt{11}>\sqrt{3}\end{matrix}\right.\))
\(=\frac{\sqrt{11}+1-\sqrt{11}+\sqrt{3}}{2\left(1+\sqrt{3}\right)}\)
\(=\frac{1+\sqrt{3}}{2\left(1+\sqrt{3}\right)}=\frac{1}{2}\)
b) Ta có: \(\frac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\frac{2}{4+\sqrt{15}}-\frac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
\(=\frac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}+\frac{2}{4+\sqrt{15}}-\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(8-\sqrt{15}\right)}{\sqrt{5}+\sqrt{3}}\)
\(=\sqrt{15}+\frac{2}{4+\sqrt{15}}-\left(8-\sqrt{15}\right)\)
\(=\sqrt{15}+\frac{2}{4+\sqrt{15}}-8+\sqrt{15}\)
\(=2\sqrt{15}-8+\frac{2}{4+\sqrt{15}}\)
\(=\frac{2\sqrt{15}\left(4+\sqrt{15}\right)}{4+\sqrt{15}}-\frac{8\left(4+\sqrt{15}\right)}{4+\sqrt{15}}+\frac{2}{4+\sqrt{15}}\)
\(=\frac{8\sqrt{15}+30-32-8\sqrt{15}+2}{4+\sqrt{15}}\)
\(=\frac{0}{4+\sqrt{15}}=0\)
Bài 2: Rút gọn
Ta có: \(B=\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\left(\frac{1+\sqrt{a}}{a-1}\right)^2\)
\(=\left(\frac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}+a\right)}{1+\sqrt{a}}-\sqrt{a}\right)\cdot\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)^2\)
\(=\left(1-\sqrt{a}+a-\sqrt{a}\right)\cdot\left(\frac{1}{\sqrt{a}-1}\right)^2\)
\(=\left(a-2\sqrt{a}+1\right)\cdot\frac{1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2}=1\)
Bài 3:
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{9;4\right\}\end{matrix}\right.\)
b) Ta có: \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{3-3\sqrt{x}}{x-5\sqrt{x}+6}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{3-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4-\left(x-2\sqrt{x}-3\right)+3-3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-3\sqrt{x}-1-x+2\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{1}{3-\sqrt{x}}\)
c) Để A<-1 thì A+1<0
\(\Leftrightarrow\frac{1}{3-\sqrt{x}}+1< 0\)
\(\Leftrightarrow\frac{-1}{\sqrt{x}-3}+\frac{\sqrt{x}-3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\frac{-1+\sqrt{x}-3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-4}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>4\\\sqrt{x}< 3\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 4\\\sqrt{x}>3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\Leftrightarrow9< x< 16\)
Bài 1:
a/ ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{x-1}-2+\sqrt{2x-1}-3=0\)
\(\Leftrightarrow\frac{x-5}{\sqrt{x-1}+2}+\frac{2\left(x-5\right)}{\sqrt{2x-1}+3}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{\sqrt{x-1}+2}+\frac{2}{\sqrt{2x-1}+3}\right)=0\)
\(\Rightarrow x=5\)
b/ĐKXĐ:...
\(x-1+\sqrt{2x-1}-1=0\)
\(\Leftrightarrow x-1+\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(1+\frac{2}{\sqrt{2x-1}+1}\right)=0\)
\(\Rightarrow x=1\)
Bài 2:
\(A=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left|2-\sqrt{3}\right|-\left|2+\sqrt{3}\right|\)
\(=2-\sqrt{3}-2-\sqrt{3}=-2\sqrt{3}\)
\(B=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left(3-\sqrt{6}\right)+\left(2\sqrt{6}-3\right)\)
\(=\sqrt{6}\)
\(C=\left(\frac{3+\sqrt{5}-3+\sqrt{5}}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right).\frac{\left(\sqrt{5}-1\right)}{\sqrt{5}\left(\sqrt{5}-1\right)}\)
\(=\frac{2\sqrt{5}}{4}.\frac{1}{\sqrt{5}}=\frac{1}{2}\)