K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2021

a) Ta có: \(2=\sqrt{4}\)

Vì \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\Rightarrow2>\sqrt{3}\Rightarrow1>\sqrt{3}-1\)

b) \(\left\{{}\begin{matrix}2\sqrt{31}=\sqrt{4.31}=\sqrt{124}\\10=\sqrt{100}\end{matrix}\right.\)

Vì \(124>100\Rightarrow\sqrt{124}>\sqrt{100}\Rightarrow2\sqrt{31}>10\)

c) Vì \(15< 16\Rightarrow\sqrt{15}< \sqrt{16}\Rightarrow\sqrt{15}-1< \sqrt{16}-1\)

\(\Rightarrow\sqrt{15}-1< 4-1\Rightarrow\sqrt{15}-1< 3\)

Lại có: \(10>9\Rightarrow\sqrt{10}>\sqrt{9}\Rightarrow\sqrt{10}>3\)

\(\Rightarrow\sqrt{10}>\sqrt{15}-1\)

12 tháng 7 2021

bạn ơi câu c) 16 lấy đâu ra ạ

 

12 tháng 7 2021

a) 1,2+3.1,3=5,1

b) 0,2+2.0,5=1,2

 

12 tháng 7 2021

a) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\\\Rightarrow2\sqrt{31}>10\)

 

16 tháng 8 2023

a) Ta có:

\(2=1+1=1+\sqrt{1}\)

Mà: \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\)

\(\Rightarrow1+\sqrt{1}< \sqrt{2}+1\)

\(\Rightarrow2< \sqrt{2}+1\)

b) Ta có:

\(1=2-1=\sqrt{4}-1\)

Mà: \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\)

\(\Rightarrow\sqrt{4}-1>\sqrt{3}-1\)

\(\Rightarrow1>\sqrt{3}-1\)

c) Ta có:

\(10=2\cdot5=2\sqrt{25}\)

Mà: \(25< 31\Rightarrow\sqrt{25}< \sqrt{31}\)

\(\Rightarrow2\sqrt{25}< 2\sqrt{31}\)

\(\Rightarrow10< 2\sqrt{31}\)

d) Ta có:

\(-12=-3\cdot4=-3\sqrt{16}\)

Mà: \(16>11\Rightarrow\sqrt{16}>\sqrt{11}\)

\(\Rightarrow-3\sqrt{16}< -3\sqrt{11}\)

\(\Rightarrow-12< -3\sqrt{11}\)

b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)

\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)

mà 80>75

nên \(4\sqrt{5}>5\sqrt{3}\)

19 tháng 9 2021

a) \(1=\sqrt{1}< \sqrt{2}\)

b) \(2=\sqrt{4}>\sqrt{3}\)

c) \(6=\sqrt{36}< \sqrt{41}\)

d) \(7=\sqrt{49}>\sqrt{47}\)

e) \(2=1+1=\sqrt{1}+1< \sqrt{2}+1\)

f) \(1=2-1=\sqrt{4}-1>\sqrt{3}-1\)

g) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\)

h) \(\sqrt{3}>0>-\sqrt{12}\)

i) \(5=\sqrt{25}< \sqrt{29}\)

\(\Rightarrow-5>-\sqrt{29}\)

19 tháng 9 2021

Giỏi quá

Bài 1: 

Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)

Số giá trị nguyên thỏa mãn điều kiện là:

\(\left(2+4\right)+1=7\)

 

21 tháng 6 2023

a)

Có: \(2>1>0\)

\(\Rightarrow\sqrt{2}>1\Rightarrow1+\sqrt{2}>1+1\\ \Leftrightarrow1+\sqrt{2}>2\)

b) Có: \(0< \sqrt{3}< 3\)

\(\Rightarrow3+1>\sqrt{3}+1\\ \Rightarrow4>\sqrt{3}+1\)

c) Có: \(0< \sqrt{11}< \sqrt{25}\left(0< 11< 25\right)\)

\(\Rightarrow\sqrt{11}< 5\\ \Rightarrow-2\sqrt{11}>-2.5=-10\left(-2< 0\right)\)

d) Có: \(0< \sqrt{11}< \sqrt{16}=4\left(do.0< 11< 16\right)\)

\(\Rightarrow3\sqrt{11}< 3.4\\ \Leftrightarrow3\sqrt{11}< 12\)

a: 2=1+1<1+căn 2

b: 4=1+3>1+căn 3

c: -2căn 11=-căn 44

-10=-căn 100

mà 44<100

nên -2 căn 11>-10

d: 12=3*4=3*căn 16>3*căn 11

a: Ta có: \(B=\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\right)\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\)

\(=\dfrac{6\sqrt{a}-6+10-2\sqrt{a}}{\left(\sqrt{a}-1\right)^2\cdot\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\)

\(=\dfrac{4\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\cdot\dfrac{1}{4\sqrt{a}}\)

\(=\dfrac{1}{\sqrt{a}}\)

27 tháng 8 2021

a) \(B=\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\right).\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}=\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{\left(a-1\right)\left(\sqrt{a}-1\right)}\right).\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}=\dfrac{6\left(\sqrt{a}-1\right)+10-2\sqrt{a}}{\left(a-1\right)\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}=\dfrac{4\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}+1\right)}.\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}=\dfrac{1}{\sqrt{a}}\)

b) \(C=B.\left(a-\sqrt{a}+1\right)=\dfrac{a-\sqrt{a}+1}{\sqrt{a}}=\sqrt{a}-1+\dfrac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\dfrac{1}{\sqrt{a}}}-1=1\)(bất đẳng thức Cauchy cho 2 số dương)