K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

Trả lời:

a, \(-xy.\left(x^2+2xy-3\right)=-x^3y-2x^2y^2+3xy\)

b, \(\left(12x^6y^5-3x^3y^4+4x^2y\right):6x^2y\)

\(=12x^6y^5:6x^2y^2-3x^3y^4:6x^2y+4x^2y+6x^2y\)

\(=2x^4y^3-\frac{1}{2}xy^3+\frac{2}{3}\)

NM
24 tháng 8 2021

a.\(\left(-xy\right)\left(x^2+2xy-3\right)=-x^3y-2x^2y^2+6xy\)

b.\(\left(12x^6y^5-3x^3y^4+4x^2y\right):6x^2y=2x^4y^4-\frac{1}{2}xy^3+\frac{2}{3}\)

3 tháng 3 2023

mik có sửa một chút 

bạn tải lại trang nhé

3 tháng 3 2023

vâng

13 tháng 11 2021

Bài 1:

\(a,6x^2-15x^3y\\ b,=-\dfrac{2}{3}x^2y^3+\dfrac{2}{3}x^4y-\dfrac{8}{3}xy\)

Bài 2:

\(a,=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\\ b,=3x^2-6x-5x+5x^2-8x^2+24=24-11x\\ c,=x^5+x^3-2x^3-2x=x^5-x^3-2x\)

13 tháng 11 2021

câu d của bài 2 là của bài 1 nha mình để nhầm chỗ huhu

 

a) Ta có: \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+\left(2y\right)^3-\left(x^3-y^3\right)\)

\(=x^3+8y^3-x^3+y^3\)

\(=9y^3\)

b) Ta có: \(\left(x+1\right)\left(x-1\right)^2-\left(x+2\right)\left(x^2-2x+4\right)\)

\(=\left(x+1\right)\left(x^2-2x+1\right)-\left(x+2\right)\left(x^2-2x+4\right)\)

\(=x^3-2x^2+x+x^2-2x+1-\left(x^3+8\right)\)

\(=x^3-x^2-x+1-x^3-8\)

\(=-x^2-x-7\)

29 tháng 10 2023

Bài 1:

a: \(x\left(x+y\right)+5y-x^2\)

\(=x^2+xy+5y-x^2\)

=xy+5y

b: \(\left(x-2\right)\left(y+1\right)-xy+4\)

\(=xy+x-2y-2-xy+4\)

=-2y+x+2

c: \(\dfrac{\left(4x^2y+12xy^2-8xy\right)}{2xy}\)

\(=\dfrac{2xy\cdot2x+2xy\cdot6y-2xy\cdot4}{2xy}\)

=2x+6y-4

d: \(\left(x-4\right)^2+8x-7\)

\(=x^2-8x+16+8x-7\)

\(=x^2+9\)

 

a: =xy(1/3+4-2)=7/3xy

b: =xy^2(-1+3/2+4/3)=(1/3+3/2)xy^2=11/6xy^2

c: =4x^2y^2+2/3x^2y^2-4/3x^2y=-4/3x^2y+14/3x^2y^2

d: =3x^2y^2z+4x^2y^2z-8x^2y^2z=-x^2y^2z

a: =-2x^3y^4z^5

Hệ số: -2

Bậc: 12

Biến: x^3;y^4;z^5

b; =-18x^2y^4z

hệ số: -18

Bậc: 7

biến: x^2;y^4;z

c: =-36x^2y^4

hệ số: -36

bậc: 6

Biến; x^2;y^4

d: =5x^3y^3z^3

hệ số: 5

Bậc: 9

biến: x^3;y^3;z^3

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

22 tháng 10 2023

b: (x-y)(x^2-2x+y)

\(=x^3-2x^2+xy-x^2y+2xy-y^2\)

\(=x^3-2x^2-x^2y+3xy-y^2\)

c: \(\left(x^2-y\right)\left(x+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+x^2y^2-xy-y^3-\left(x^3-y^3\right)\)

\(=x^2y^2-xy\)

d: \(3x\left(2xy-z\right)-5y\left(x^2-2\right)+3xz\)

\(=6x^2y-3xz-5x^2y+10y+3xz\)

\(=x^2y+10y\)

a: =-2x^2y^3z^2

Hệ số: -2

bậc: 7

b: =-1/3x^3y^3

hệ số: -1/3

bậc: 6

c: =-1/2x^6y^5

hệ số: -1/2

bậc: 11

d: =-2/3x^3y^4

hệ số: -2/3

bậc: 7

e: =3/4x^3y^4

hệ số:3/4

bậc: 7