Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{6}xy^{7-n+2}z^{n-3}-x^{n-2-4}y^{8-n+2}\)
\(=\dfrac{1}{6}xy^{9-n}z^{n-3}-x^{n-6}y^{10-n}\)
Để đây là phép chia hết thì 9-n>=0 và n-3>=0 và n-6>=0 và 10-n>=0
=>n<=9 và n>=6
=>n thuộc {6;7;8;9}
\(3x^{n-2}\left(x^{n+2}-y^{n+2}\right)+y^{n+2}\left(3x^{n-2}-y^{2-2}\right)\)
\(=3x^{2n}-3x^{n-2}y^{n+2}+y^{n+2}\left(3x^{n-2}-y^{n-2}\right)\)
\(=3x^{2n}-3x^{n-2}y^{n+2}+3x^{n-2}y^{n+2}-y^{2n}\)
\(=3x^{2n}-y^{2n}\)
P/s: Mk ko rõ đề nên làm vậy nhé!
Đề bài chắc là đơn giản tỉ lệ thức(rút gọn) nên mình làm luôn nha:
\(3x^{n-2}\left(x^{n+2}-y^{n+2}\right)+y^{n+2}\left(3x^{n-2}-y^{n-2}\right)\)
\(=3x^{2n}-3xy^{2n}+3xy^2-y^{2n}\)
\(=3x^{2n}-y^{2n}\)
\(=3x^{n-2}.x^{n+2}-3x^{n-2}.y^{n+2}+y^{n+2}.3x^{n-2}-y^{n+2}.y^{n-2}\)
\(=3x^{2n}-y^{2n}\)
Lời giải:
Ta có:
\(A=3x^{n-2}(x^{n+2}-y^{n+2})+y^{n+2}(3x^{n-2}-y^{n-2})\)
\(=3x^{n-2}.x^{n+2}-3x^{n-2}y^{n+2}+3y^{n+2}x^{n-2}-y^{n+2}.y^{n-2}\)
\(=3x^{n-2+n+2}-y^{n+2+n-2}=3x^{2n}-y^{2n}\)