Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a, Gọi d=ƯCLN(2n+1;4n+3)
\(\Rightarrow2n+1⋮d;4n+3⋮d\\ \Rightarrow2\left(2n+1\right)-4n-3⋮d\\ \Rightarrow1⋮d\Rightarrow d=1\)
Vậy ƯCLN(2n+1;4n+3)=1 hay ta đc đpcm
b, Gọi d=ƯCLN(3n+5;5n+8)
\(\Rightarrow3n+5⋮d;5n+8⋮d\\ \Rightarrow5\left(3n+5\right)-3\left(5n+8\right)⋮d\\ \Rightarrow1⋮d\Rightarrow d=1\)
Vậy ƯCLN(3n+5;5n+8)=1 hay ta đc đpcm
Bài 1:Tính cả ước âm thì là số `12`
Bài 2:
Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`
`=>7n+10 vdots d,5n+7 vdots d`
`=>35n+50 vdots d,35n+49 vdots d`
`=>1 vdots d`
`=>d=1`
`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.
Các phần còn lại thì bạn làm tương tự câu a.
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh