K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2018

1,
( 2x-5) + 17=6
\(2x-5=6-17\)
\(2x-5=-11\)
\(2x=-11+5\)
\(2x=-6\)
\(x=-6:2\)
\(x=-3\)
Vậy \(x=3\)


2,
10-2(4-3x)=-4
\(-2\left(4-3x\right)=-4-10\)
\(-2\left(4-3x\right)=-14\)
\(4-3x=-14:\left(-2\right)\)
\(4-3x=7\)
\(-3x=7-4\)
\(-3x=3\)
\(x=3:\left(-3\right)\)
\(x=-1\)
Vậy \(x=-1\)

3,
-12+3(-x+7)=-18
\(3\left(-x+7\right)=-18+12\)
\(3\left(-x+7\right)=-6\)
\(-x+7=-6:3\)
\(-x+7=-2\)
\(-x=-2-7\)
\(-x=-9\)
\(x=9\)
\(\text{Vậy }x=9\)

4,
24:(3x -2)=-3
\(3x-2=24:\left(-3\right)\)
\(3x-2=-8\)
\(3x=-8+2\)
\(3x=-6\)
\(x=-6:3\)
\(x=-2\)
\(\text{Vậy }x=-2\)

5,
-45:5.(-3-2x)=3
\(5\left(-3-2x\right)=-45:3\)
\(5\left(-3-2x\right)=-15\)
\(-3-2x=-15:5\)
\(-3-2x=-3\)
\(-2x=-3+3\)
\(-2x=0\)
\(x=0\)
Vậy \(x=0\)

6,
x.(x+7)= 0
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x+7=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x=-7\end{matrix}\right.\)
\(\text{Vậy}\left\{{}\begin{matrix}x=0\\x=-7\end{matrix}\right.\)

7,
( x+ 12 ) .( x-3)=0
\(\Rightarrow\left\{{}\begin{matrix}x+12=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\x=3\end{matrix}\right.\)
\(\text{Vậy }\left\{{}\begin{matrix}x=-12\\x=3\end{matrix}\right.\)

8,
(-x+5).(3-x) =0
\(\Rightarrow\left\{{}\begin{matrix}-x+5=0\\3-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-x=-5\\-x=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
Vậy \(x=5\text{ hoặc }x=3\)

9, x.( 2+x).(7-x)=0
\(\Rightarrow\left\{{}\begin{matrix}x=0\\2+x=0\\7-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x=-2\\x=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\x=-2\\x=7\end{matrix}\right.\)

10,
(x-1).(x+2).(-x-3)=0
\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+2=0\\-x-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\x=-2\\-x=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)