Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 2(x+1)+42=24
2(x+1)+16=16
2(x+1) = 16-16
2(x+1) = 0
x+1=2x0
x+1=0
x=0-1
x = -1
a, => 2x+5-x+7=18
=>x+12=18
=>x=6
b, =>2(x+1)=0
=>x+1=0
=>x=-1
c, \(\frac{x-3}{x+5}=\frac{5}{7}\Rightarrow7\left(x-3\right)=5\left(x+5\right)\Rightarrow7x-21=5x+25\Rightarrow7x-5x=25+21\Rightarrow2x=46\Rightarrow x=23\)
2x + 5 - ( x - 7 ) = 18
2x + 5 - x + 7 = 18
x = 18 -12=6
2( x + 1 ) +42 = 24
2x + 2 =0
x = -1
\(x-\frac{3}{x}+5=\frac{5}{7}\)
\(\frac{x^2-3}{x}=\frac{-30}{7}\)
\(7x^2-21=-30x\)
\(7x^2+30x-21=0\)
\(x=0,612471646\)
a, Xét : x-4 = 0 => x= 4
2x+1 = 0 => x= \(\frac{1}{2}\)
x+3 = 0 => x = -3
x + 9 = 0 => x = -9
Khi đó ta có bảng xét dấu :
x | -9 | -3 | \(\frac{1}{2}\) | 4 |
x-4 | -13 | -7 | \(\frac{-7}{2}\) | 0 |
2x+1 | -17 | -5 | 2 | 9 |
x+3 | -6 | 0 | \(\frac{7}{2}\) | 7 |
x+9 | 0 | 6 | \(\frac{19}{2}\) | 13 |
=> có 5 trường hợp:
TH1 : \(x\le-9\)
TH2 : \(-9\le x< -3\)
TH3 : \(-3\le x< \frac{1}{2}\)
TH4 : \(\frac{1}{2}\le x< 4\)
Do đó :
TH1 : \(x\le-9\)
Ta có : /x-4/ = -(x-4) = 4 - x
/2x+1/ = -(2x+1) = -2x -1
/x+3/ = -(x + 3 ) = -x - 3
/x-9/ = -(x-9) = -x + 9 Thay vào đề bài ta có:
3.(4-x) + 2x-1 +5(-x - 3) -x-9 = 5
=> 12 - 3x + 2x - 1 + -5x - 15 - x - 9 = 5
=>(12 - 1 - 15 -9 ) +(-3x +2x -5x -x) = 5
=> -13 - 7x = 5
7x = -13 - 5
7x = -18
x = \(\frac{-18}{7}\)( Ko TM)
Tương tự với 4 trường hợp còn lại.
a) 1/7 - 3/5x = 3/5
3/5x= 1/7 - 3/5
3/5x = -16/35
x= -16/35 : 3/5 = -16/21
b) 3/7 - 1/2x = 5/3
1/2x = 3/7 - 5/3 = -26/21
x= -26/21 : 1/2 = -52/21
a)\(4x\left(x-5\right)-\left(x-1\right)\left(4x-3\right)=5\)
\(4x^2-20x-\left(4x^2-7x+3\right)=5\)
\(4x^2-20x-4x^2+7x-3=5\)
\(-13x=8\)
\(x=-\frac{8}{13}\)
b)\(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
\(48x^2-32x+5+3x-48x^2-7+112x=81\)
\(83x-2=81\)
\(x=1\)
Ta cố bdt \(|a|+|b|\ge|a+b|\), dễ dàng chứng mình bằng bình phương 2 vế. Dấu = sảy ra <=>IaI.IbI=a.b <=> a.b>=0
áp dụng vào từng câu
a)A=Ix+1I+Ix+2I+Ix+3I+I-x-4I+I-x-5I ( vì Ix+4I=I-x=4I, Ix+5I=I-x-5I
A>=I(x+1)+(-x-5)I+I(x+2)+(-x-4)I +Ix+3I=4+2+Ix+3I=6+Ix+3I>=6
Dấu bằng khi (x+1)(-x-5)>=0;(x+2)(-x-4)>=0;Ix+3I=0 =>x=-3
b) LÀm tương tự MinB=18
Dấu = khi (2x+1)(-2x-11)>=0;(2x+3)(-2x-9)>=0;(2x+5)(-2x-7)>=0 <=>-7/2<=x<=-5/2