Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(=2x^4-x^3-10x^2-2x^3+x^2+10x=2x^3-3x^3-9x^2+10x\)
b: \(=\left(x^2-15x\right)\left(x^2-7x+3\right)\)
\(=x^4-7x^3+3x^2-15x^3+105x^2-45x\)
\(=x^4-22x^3+108x^2-45x\)
c: \(=12x^5-18x^4+30x^3-24x^2\)
d: \(=-3x^6+2.4x^5-1.2x^4+1.8x^2\)
a: \(=-2x^2\cdot3x+2x^2\cdot4X^3-2x^2\cdot7+2x^2\cdot x^2\)
\(=8x^5+2x^4-6x^3-14x^2\)
b: \(=2x^3-3x^2-5x+6x^2-9x-15\)
\(=2x^3+3x^2-14x-15\)
c: \(=\dfrac{-6x^5}{3x^3}+\dfrac{7x^4}{3x^3}-\dfrac{6x^3}{3x^3}=-2x^2+\dfrac{7}{3}x-2\)
d: \(=\dfrac{\left(3x-2\right)\left(3x+2\right)}{3x+2}=3x-2\)
e: \(=\dfrac{2x^4-8x^3-6x^2-5x^3+20x^2+15x+x^2-4x-3}{x^2-4x-3}\)
=2x^2-5x+1
c:
Trường hợp 1: x<-3
\(\Leftrightarrow-x-3-x-1=3x\)
\(\Leftrightarrow-5x=4\)
hay \(x=-\dfrac{4}{5}\left(loại\right)\)
Trường hợp 2: -3<=x<-1
\(\Leftrightarrow x+3-x-1=3x\)
hay \(x=\dfrac{2}{3}\left(loại\right)\)
Trường hợp 3: x>=-1
\(\Leftrightarrow2x+4=3x\)
hay x=4(nhận)
143. a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)
\(=-6.\left(-\dfrac{1}{18}\right)x^n.x^{2-n}.y^n+\left(-6\right).\dfrac{1}{27}x^n.y^n.y^{5-n}\)
\(=\dfrac{1}{3}x^{n+2-n}y^n-\dfrac{2}{9}x^n.y^{n+5-n}\)
\(=\dfrac{1}{3}x^2y^n-\dfrac{2}{9}x^ny^5\)
b) Ta có: \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)
\(=5x^2\left(-xy\right)+5x^2.\left(-x^2\right)+5x^2.7y^2-2y^2.\left(-xy\right)-2y^2.\left(-x^2\right)-2y^2.7y^2-2xy.\left(-xy\right)-2xy\left(-x^2\right)-2xy.7y^2\)
\(=-5x^3y-5x^4+35x^2y^2+2xy^3+2x^2y^2-14y^4+2x^2y^2+2x^3y-14xy^3\)
Rút gọn các đa thức đồng dạng, ta có kết quả:
\(-5x^4-3x^3y+39x^2y^2-12xy^3-14y^4\)
Kết quả đã được xếp theo lũy thừa giảm dần của x