Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tìm x
a) (x-5) (x-3)+ 2(x-5)=0
b) (x-2)(x^2+2x+4)-(x+2)(x^2-2x+4)=2(x+2)
giúp e với ạ, e cảm ơn
a) (x - 5)(x - 3) + 2(x - 5) = 0
(x - 5)(x - 3 + 2) = 0
(x - 5)(x - 1) = 0
x - 5 = 0 hoặc x - 1 = 0
*) x - 5 = 0
x = 5
*) x - 1 = 0
x = 1
Vậy x = 1; x = 5
b) (x - 2)(x² + 2x + 4) - (x + 2)(x² - 2x + 4) = 2(x + 2)
x³ - 8 - x³ - 8 = 2x + 4
2x = -8 - 8 - 4
2x = -20
x = -20 : 2
x = -10
a)
\(\left(x-5\right)\left(x-3\right)+2\left(x-5\right)=0\)
\(\left(x-5\right)\left(x-3+2\right)=0\)
\(\left(x-5\right)\left(x-1\right)=0\)
\(x-5=0\) hoặc \(x-1=0\)
+) \(x-5=0\\ \Rightarrow x=5\)
+) \(x-1=0\\ \Rightarrow x=1\)
Vậy \(x=1\) hoặc \(x=5\)
b) \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)=2\left(x+2\right)\)
\(x^3-8-x^3-8=2x+4\)
\(2x=-8-8-4\)
\(2x=-20\)
\(x=-20:2\)
\(x=-10\)
Vậy \(x=-10\)
a) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+4+x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2-x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{23}{4}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(N\right)\\\left(x-\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}>0\left(L\right)\end{matrix}\right.\)
Vậy \(S=\left\{-2\right\}\)
b) \(9x^2-4-\left(3x-2\right)^2=0\)
\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)-\left(3x-2\right)^2=0\)
\(\Leftrightarrow\left(3x-2\right)\left[\left(3x+2\right)-\left(3x-2\right)\right]=0\)
\(\Leftrightarrow\left(3x-2\right)\left(3x+2-3x+2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\cdot4=0\)
\(\Leftrightarrow3x-2=0\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(S=\left\{\dfrac{2}{3}\right\}\)
a) \(6x^2-72x=0\)
\(6x\left(x-12\right)=0\)
\(6x=0\) hoặc \(x-72=0\)
*) \(6x=0\)
\(x=0\)
*) \(x-12=0\)
\(x=12\)
Vậy \(x=0;x=12\)
b) \(-2x^4+16x=0\)
\(-2x\left(x^3-8\right)=0\)
\(-2x=0\) hoặc \(x^3-8=0\)
*) \(-2x=0\)
\(x=0\)
*) \(x^3-8=0\)
\(x^3=8\)
\(x=2\)
Vậy \(x=0;x=2\)
c) \(x\left(x-5\right)-\left(x-3\right)^2=0\)
\(x^2-5x-x^2+6x-9=0\)
\(x-9=0\)
\(x=9\)
d) \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)=0\)
\(x^3-6x^2+12x-8-x^3+8=0\)
\(-6x^2+12x=0\)
\(-6x\left(x-2\right)=0\)
\(-6x=0\) hoặc \(x-2=0\)
*) \(-6x=0\)
\(x=0\)
*) \(x-2=0\)
\(x=2\)
Vậy \(x=0;x=2\)
\(a,\Leftrightarrow\left(5x+1\right)\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(5x+1-x\right)=0\\ \Leftrightarrow5x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x^2-10x-2x^2-3x=26\\ \Leftrightarrow-13x=26\\ \Leftrightarrow x=-2\\ c,\Leftrightarrow x^3+1-x^3+3x=15\\ \Leftrightarrow3x=14\\ \Leftrightarrow x=\dfrac{14}{3}\)
\(d,\Leftrightarrow x^3-5x+2x^2-10+5x-2x^2-17=0\\ \Leftrightarrow x^3-27=0\\ \Leftrightarrow x^3=27\\ \Leftrightarrow x=3\)
a: Ta có: \(4\left(x+1\right)^2+\left(2x+1\right)^2-8\left(x-1\right)\left(x+1\right)-11=0\)
\(\Leftrightarrow4x^2+8x+4+4x^2+4x+1-8x^2+8-11=0\)
\(\Leftrightarrow12x=-2\)
hay \(x=-\dfrac{1}{6}\)
b: Ta có: \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)-1=0\)
\(\Leftrightarrow x^2+6x+9-x^2-4x+32-1=0\)
\(\Leftrightarrow2x=-40\)
hay x=-20
f: Ta có: \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\)
a. (2x + 1)2 - 4x2 + 2x2 - 2 = 0
<=> (2x + 1 - 2x)(2x + 1 + 2x) + 2(x2 - 1) = 0
<=> (4x + 1) + 2x2 - 2 = 0
<=> 4x + 1 + 2x2 - 2 = 0
<=> 2x2 + 4x - 2 + 1 = 0
<=> 2x2 + 4x - 1 = 0
<=> 2x2 + 4x = 1
<=> 2x(x + 2) = 1
Vì 1 chỉ có tích là 1 . 1 nên:
<=> \(\left[{}\begin{matrix}2x=1\\x+2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-1\end{matrix}\right.\)
\(a,\Leftrightarrow4x^2+4x+1-4x^2+2x^2-2=0\\ \Leftrightarrow2x^2+4x-1=0\\ \Leftrightarrow2\left(x^2+2x+1\right)-3=0\\ \Leftrightarrow2\left(x+1\right)^2-3=0\\ \Leftrightarrow\left(x+1\right)^2=\dfrac{3}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{\dfrac{3}{2}}\\x+1=-\sqrt{\dfrac{3}{2}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{6}}{2}\\x=\dfrac{-2+\sqrt{6}}{2}\end{matrix}\right.\)
\(b,\left(x-2\right)\left(x+2\right)-\left(x+3\right)^2-2x-5=0\\ \Leftrightarrow x^2-4-x^2-6x-9-2x-5=0\\ \Leftrightarrow-8x=18\\ \Leftrightarrow x=-\dfrac{9}{4}\)
a) \(3\left(x-1\right)^2\cdot3x\left(x-5\right)=0\)
\(\Rightarrow9x\left(x-1\right)^2\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=5\end{matrix}\right.\)
b) \(\left(x+3\right)^2-5x-15=0\)
\(\Rightarrow\left(x+3\right)^2-5\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x+3-5\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
c) \(2x^5-4x^3+2x=0\)
\(\Rightarrow2x\left(x^4-2x^2+1\right)=0\)
\(\Rightarrow2x\left[\left(x^2\right)^2-2\cdot x^2\cdot1+1^2\right]=0\)
\(\Rightarrow2x\left(x^2-1\right)^2=0\)
\(\Rightarrow2x\left(x-1\right)^2\left(x+1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
\(\text{#}Toru\)
a) \(\left(2x-1\right)^2-25=0\)
⇔ \(\left(2x-1\right)^2-5^2=0\)
⇔ \(\left(2x-1-5\right)\left(2x-1+5\right)=0\)
⇒ \(2x-1-5=0\) hoặc \(2x-1+5=0\)
⇔ \(x=3\) hoặc \(x=-2\)
Bài 1: Tìm x
a) (2x-1) ² - 25 = 0
<=> (2x-1)2 = 25
<=> 2x-1 = 5 hay 2x-1 =-5
<=> 2x= 6 hay 2x=-4
<=> x=3 hay x= -2
Vậy S={3; -2}
b) 3x (x-1) + x - 1 = 0
<=> (x-1)(3x+1)=0
<=> x-1=0 hay 3x+1=0
<=> x=1 hay 3x=-1
<=> x=1 hay x=\(\dfrac{-1}{3}\)
Vậy S={1;\(\dfrac{-1}{3}\)}
c) 2(x+3) - x ² - 3x = 0
<=> 2(x+3)- x(x+3)=0
<=> (x+3)(2-x)=0
<=> x+3=0 hay 2-x=0
<=> x=-3 hay x=2
Vậy S={-3;2}
d) x(x - 2) + 3x - 6 = 0
<=> x(x-2)+3(x-2)=0
<=> (x-2)(x+3)=0
<=> x-2=0 hay x+3=0
<=> x=2 hay x=-3
Vậy S={2;-3}
e) 4x ² - 4x +1 = 0
<=> (2x-1)2=0
<=> 2x-1=0
<=> 2x=1
<=> x=\(\dfrac{1}{2}\)
Vậy S={\(\dfrac{1}{2}\)}
f) x +5x2 = 0
<=> x(1+5x)=0
<=>x=0 hay 1+5x=0
<=> x=0 hay 5x=-1
<=> x=0 hay x= \(\dfrac{-1}{5}\)
Vậy S={0;\(\dfrac{-1}{5}\)}
g) x ²+ 2x -3 = 0
<=> x2-x+3x-3=0
<=> x(x-1)+3(x-1)=0
<=> (x-1)(x+3)=0
<=> x-1=0 hay x+3=0
<=> x=1 hay x=-3
Vậy S={1;-3}
\(a,\Leftrightarrow x^2-2x-x^2+1=0\\ \Leftrightarrow-2x+1=0\Leftrightarrow x=\dfrac{1}{2}\\ b,\Leftrightarrow\left(2x-1-x-4\right)\left(2x-1+x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(3x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)