Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left|x+9\right|=12+\left(-9\right)+2\)
\(\Leftrightarrow\left|x+9\right|=12-9+2=5\Leftrightarrow\left|x+9\right|=\pm5\)
TH1 : \(x+9=5\Leftrightarrow x=-4\)
TH2 : \(x+9=-5\Leftrightarrow x=-14\)
b, \(5x-16=40+x\Leftrightarrow4x=56\Leftrightarrow x=14\)
c, \(5x-7=-21-2x\Leftrightarrow7x=-14\Leftrightarrow x=-2\)
| x + 9 | = 12 + ( - 9 ) + 2
| x + 9 | = 3+2
| x + 9 | = 5
TH1: x+9 = 5 TH2: x+9 = -5
=>x=-4 =>x=-14
Vậy x {-4;-14}
5x - 16 = 40 + x
5x - 16 = 40 + 1x
=>5x-1x = 40+16
4x = 56
=> x = 14
5x - 7 = - 21 - 2x
=> 5x - 2x = -21 - 7
3x = -28
=> x = -9,(3)
3, \(x-5⋮x-1\)
\(x-1-4⋮x-1\)
\(-4⋮x-1\Rightarrow x-1\inƯ\left(-4\right)=\left\{\pm1;\pm4\right\}\)
x - 1 | 1 | -1 | 4 | -4 |
x | 2 | 0 | 5 | -3 |
4,\(3x+5⋮2x-1\Leftrightarrow6x+10⋮2x+1\)
\(\Leftrightarrow3\left(2x+1\right)+7⋮2x+1\Leftrightarrow7⋮2x+1\)
\(\Rightarrow2x+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
2x + 1 | 1 | -1 | 7 | -7 |
2x | 0 | -2 | 6 | -8 |
x | 0 | -1 | 3 | -4 |
l) (x + 9) . (x2 – 25) = 0
<=> (x + 9) . (x – 5) . (x + 5) = 0
<=> \(\left[{}\begin{matrix}\text{x + 9 = 0}\\x-5=0\\x+5=0\end{matrix}\right.\left[{}\begin{matrix}x=-9\\x=5\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{-9,5,-5\right\}\)
e) |x - 4 |< 7
<=> \(\left[{}\begin{matrix}x-4=7\\x-4=-7\end{matrix}\right.< =>\left[{}\begin{matrix}x=11\\x=-3\end{matrix}\right.\)
Vậy S = \(\left\{11;-3\right\}\)
I,(x+9).(x^2-25)=0
tương đương:x+9=0
x^2-25=0
tương đương : x=-9
x=5
e,\(\left|x-4\right|\)=7
tương đương x-4=4
x-4=-4
tương đương :x=0
x=-8
\(\left(x+2\right)-2=0\)
\(\Rightarrow x+2-2=0\)
\(\Rightarrow x=0\)
\(\left(x+3\right)+1=7\)
\(\Rightarrow x+3+1=7\)
\(\Rightarrow x+4=7\)
\(\Rightarrow x=3\)
\(\left(3x-4\right)+4=12\)
\(\Rightarrow3x-4+4=12\)
\(\Rightarrow3x=12\)
\(\Rightarrow x=4\)
\(\left(5x+4\right)-1=13\)
\(\Rightarrow5x+4-1=13\)
\(\Rightarrow5x+3=13\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\)
\(\left(4x-8\right)-3=5\)
\(\Rightarrow4x-8-3=5\)
\(\Rightarrow4x-11=5\)
\(\Rightarrow4x=16\)
\(\Rightarrow x=4\)
\(8-\left(2x+4\right)=2\)
\(\Rightarrow8-2x-4=2\)
\(\Rightarrow4-2x=2\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
\(7+\left(5x+2\right)=14\)
\(\Rightarrow7+5x+2=14\)
\(\Rightarrow9+5x=14\)
\(\Rightarrow5x=5\)
\(\Rightarrow x=1\)
\(5-\left(3x-11\right)=1\)
\(\Rightarrow5-3x+11=1\)
\(\Rightarrow16-3x=1\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
a) \(\dfrac{2}{3}x-\dfrac{1}{2}=\dfrac{1}{10}\)
\(\dfrac{2}{3}x=\dfrac{1}{10}+\dfrac{1}{2}=\dfrac{3}{5}\)
\(x=\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{9}{10}\)
b) \(\dfrac{39}{7}:x=13\)
\(x=\dfrac{\dfrac{39}{7}}{13}=\dfrac{3}{7}\)
c) \(\left(\dfrac{14}{5}x-50\right):\dfrac{2}{3}=51\)
\(\dfrac{14}{5}x-50=51\cdot\dfrac{2}{3}=34\)
\(\dfrac{14}{5}x=34+50=84\)
\(x=\dfrac{84}{\dfrac{14}{5}}=30\)
d) \(\left(x+\dfrac{1}{2}\right)\left(\dfrac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\\dfrac{2}{3}-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
e) \(\dfrac{2}{3}x-\dfrac{1}{2}x=\dfrac{5}{12}\)
\(\dfrac{1}{6}x=\dfrac{5}{12}\)
\(x=\dfrac{5}{12}:\dfrac{1}{6}=\dfrac{5}{2}\)
g) \(\left(x\cdot\dfrac{44}{7}+\dfrac{3}{7}\right)\dfrac{11}{5}-\dfrac{3}{7}=-2\)
\(\left(x\cdot\dfrac{44}{7}+\dfrac{3}{7}\right)\cdot\dfrac{11}{5}=-2+\dfrac{3}{7}=-\dfrac{11}{7}\)
\(x\cdot\dfrac{44}{7}+\dfrac{3}{7}=-\dfrac{11}{7}:\dfrac{11}{5}=-\dfrac{5}{7}\)
\(\dfrac{44}{7}x=-\dfrac{5}{7}-\dfrac{3}{7}=-\dfrac{8}{7}\)
\(x=-\dfrac{8}{7}:\dfrac{44}{7}=-\dfrac{2}{11}\)
h) \(\dfrac{13}{4}x+\left(-\dfrac{7}{6}\right)x-\dfrac{5}{3}=\dfrac{5}{12}\)
\(\dfrac{25}{12}x-\dfrac{5}{3}=\dfrac{5}{12}\)
\(\dfrac{25}{12}x=\dfrac{5}{12}+\dfrac{5}{3}=\dfrac{25}{12}\)
\(x=1\)
Mỏi tay woa bn làm nốt nha!!
a) 7x - 5 = 16 b) 156 - 2x = 82 c) 10x + 65 = 125
=> 7x = 16 + 5 => 2x = 156 - 82 => 10x = 125 - 65
=> 7x = 21 => 2x = 74 => 10x = 60
=> x = 21 : 7 => x = 74 : 2 => x = 60 : 10
=> x = 3 => x = 37 => x = 6
Vậy x = 3 Vậy x = 37 Vậy x = 6
d) 8x + 2x = 25.2 e) 15 + 5x = 40 f) 5x + 2x = 6 - 5
=> 10x = 50 => 5x = 40 - 15 => 7x = 1
=> x = 50 : 10 => 5x = 25 => x = 1 : 7
=> x = 5 => x = 25 : 5 => x = 1/7
Vậy x = 5 => x = 5 Vậy x = 1/7
Vậy x = 5
g) 5x + x = 150 : 2 + 3 h) 6x + 3x = 5 : 5 + 3 i) 5x + 3x = 3 : 3 . 4 + 12
=> 6x = 75 + 3 => 9x = 1 + 3 => 8x = 1 . 4 + 12
=> 6x = 78 => 9x = 4 => 8x = 4 + 12
=> x = 78 : 6 => x = 4 : 9 => 8x = 16
=> x = 13 => x = 4/9 => x = 16 : 8
Vậy x = 13 Vậy x = 4/9 => x = 2
Vậy x = 2
j) 4x + 2x = 68 - 2 : 2 k) 5x + x = 39 - 3 : 3 l) 7x - x = 5 : 5 + 3 . 2 - 7
=> 6x = 68 - 1 => 6x = 39 - 1 => 6x = 1 + 6 - 7
=> 6x = 67 => 6x = 38 => 6x = 7 - 7
=> x = 67 : 6 => x = 38 : 6 => 6x = 0
=> x = 67/6 => x = 19/3 => x = 0
Vậy x = 67/6 Vậy x = 19/3 Vậy x = 0
m) 7x - 2x = 6 : 6 + 44 : 11
=> 5x = 1 + 4
=> 5x = 5
=> x = 5 : 5
=> x = 1
Vậy x = 1
Mỏi tay ~~~~~~~~~~~~~~
a) \(\dfrac{2x+5}{2x+1}=\dfrac{2x+1+4}{2x+1}=\dfrac{2x+1}{2x+1}+\dfrac{4}{2x+1}=1+\dfrac{4}{2x+1}\)
Để \(\dfrac{2x+5}{2x+1}\in Z\) thì \(\dfrac{4}{2x+1}\in Z\)
\(\Rightarrow4\) ⋮ \(2x+1\)
\(\Rightarrow2x+1\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow2x\in\left\{0;-2;1;-3;3;-5\right\}\)
\(\Rightarrow x\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};\dfrac{3}{2};-\dfrac{5}{2}\right\}\)
Mà x nguyên \(\Rightarrow\text{x}\in\left\{0;-1\right\}\)
b) \(\dfrac{3x+5}{x+1}=\dfrac{3x+3+2}{x+1}=\dfrac{3\left(x+1\right)+2}{x+1}=\dfrac{3\left(x+1\right)}{x+1}+\dfrac{2}{x+1}=3+\dfrac{2}{x+1}\)
Để \(\dfrac{3x+5}{x+1}\in Z\) thì \(\dfrac{2}{x+1}\in Z\)
\(\Rightarrow2\) ⋮ \(x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{0;-2;1;-3\right\}\)
c) \(\dfrac{3x+8}{x-1}=\dfrac{3x-3+11}{x-1}=\dfrac{3\left(x-1\right)+11}{x-1}=\dfrac{3\left(x-1\right)}{x-1}+\dfrac{11}{x-1}=3+\dfrac{11}{x-1}\)
Để: \(\dfrac{3x+8}{x-1}\in Z\) thì \(\dfrac{11}{x-1}\in Z\)
\(\Rightarrow11\) ⋮ \(x-1\)
\(\Rightarrow x-1\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Rightarrow x\in\left\{2;0;12;-10\right\}\)
d) \(\dfrac{5x+12}{x-2}=\dfrac{5x-10+22}{x-2}=\dfrac{5\left(x-2\right)+22}{x-2}=\dfrac{5\left(x-2\right)}{x-2}+\dfrac{22}{x-2}=5+\dfrac{22}{x-2}\)
Để: \(\dfrac{5x+12}{x-2}\in Z\) thì \(\dfrac{22}{x-2}\in Z\)
\(\Rightarrow22\) ⋮ \(x-2\)
\(\Rightarrow x-2\inƯ\left(22\right)=\left\{1;-1;2;-2;11;-11;22;-22\right\}\)
\(\Rightarrow x\in\left\{3;1;4;0;13;-9;24;-20\right\}\)
e) \(\dfrac{7x-12}{x+16}=\dfrac{7x+112-124}{x+16}=\dfrac{7\left(x+16\right)-124}{x+16}=\dfrac{7\left(x+16\right)}{x+16}-\dfrac{124}{x+16}=7-\dfrac{124}{x+16}\)
Để \(\dfrac{7x-12}{x+16}\in Z\) thì \(\dfrac{124}{x+16}\in Z\)
\(\Rightarrow124\) ⋮ \(x+16\)
\(\Rightarrow x+16\inƯ\left(124\right)=\left\{1;-1;2;-2;4;-4;31;-31;62;-62;124;-124\right\}\)
\(\Rightarrow x\in\left\{-15;-17;-14;-18;-12;-20;15;-47;46;-78;108;-140\right\}\)
1. Thực hiện phép tính bằng cách hợp lí :
a) (-46) + (-125) + 46 + 25 = [(-46)+46] + [(-125)+25]
= 0+(-100) = -100
b) 25.(-15) + 25.(-5) + (-20).75 = 25.[(-15)+(-5)] + (-20).75
= 25.(-20) + (-20).75 = (-20).(25+75) = (-20).100 = -2000
c) (-151)+(-37)+(-42)+(-63)+142 =(-151)+[(-37)+(-63)]+[(-42)+142]
= (-151) + [(-100) + 100] = -151
d)32+(-149)+(-311)+(-89)+(-51) = 32+[(-149)+(-51)] + [(-311)+(-89)]
= 32+[(-200)+(-400)] = 32+(-600) = -568
e)-65.(87-17)-87.(17-65) = (-65).87 - (-65).17 - 87.17 + 87.65
= (-65).87 + 65.17 - 87.17 + 87.65 = [(-65).87+87.65] + 65.(17-87)
= 65.(-70) = -4550
g) -43.(53-16) - 53.(16-43) = (-43).53 - (-43).16 - 53.16 + 53.43
= (-43).53 + 43.16 - 53.16 + 53.43 = [(-43).53+53.43] + 16.(43-53)
= 16.(-10) = -160
1. \(3-|2x+1|=-5\)
\(\Rightarrow|2x+1|=8\)
\(\Rightarrow\orbr{\begin{cases}2x+1=8\\2x+1=-8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=7\\2x=-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{9}{2}\end{cases}}\)
Vậy \(x\in\left\{\frac{7}{2};-\frac{9}{2}\right\}\)
2.\(12+|3-x|=9\)
\(\Rightarrow|3-x|=-3\)
Mà \(|3-x|\ge0\forall x\)
\(\Rightarrow\)Vô lí
Vậy không có x
3.\(|x+9|=12+\left(-9\right)+2\)
\(\Rightarrow|x+9|=5\)
\(\Rightarrow\orbr{\begin{cases}x+9=5\\x+9=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-4\\x=-14\end{cases}}\)
Vậy \(x\in\left\{-4;-14\right\}\)
4.\(5x-16=40+x\)
\(\Rightarrow5x-x=40+16\)
\(\Rightarrow4x=56\)
\(\Rightarrow x=14\)
Vậy \(x=14\)
5.\(5x-7=-21-2x\)
\(\Rightarrow5x+2x=-21+7\)
\(\Rightarrow7x=-14\)
\(\Rightarrow x=-2\)
Vậy \(x=-2\)
6.\(\left(2x-1\right)\left(y-2\right)=12\)
Vì \(x,y\inℤ\)nên \(2x-1;y-2\inℤ\)
\(\Rightarrow2x-1;y-2\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Ta có bảng : (em tự xét bảng nhé)