K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Thật ra cách làm dạng bài này cũng gần giống như bài tìm gtnn bạn vừa hỏi, chỉ khác ở chỗ đặt dấu âm ra ngoài để tìm được gtln thôi. 

Bài 1:

a: ĐKXĐ: \(x+4\ne0\)

=>\(x\ne-4\)

b: ĐKXĐ: \(2x-1\ne0\)

=>\(2x\ne1\)

=>\(x\ne\dfrac{1}{2}\)

c: ĐKXĐ: \(x\left(y-3\right)\ne0\)

=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)

d: ĐKXĐ: \(x^2-4y^2\ne0\)

=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)

=>\(x\ne\pm2y\)

e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)

=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)

 Bài 2:

a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)

b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)

\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)

\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)

\(=\dfrac{x+y}{x-y}\)

c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)

\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)

\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)

\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)

\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)

e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)

\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)

\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)

g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)

\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)

\(=\dfrac{x+4}{x+2}\)

 

Bài 1: 

a) Ta có: \(A=-x^2-4x-2\)

\(=-\left(x^2+4x+2\right)\)

\(=-\left(x^2+4x+4-2\right)\)

\(=-\left(x+2\right)^2+2\le2\forall x\)

Dấu '=' xảy ra khi x=-2

b) Ta có: \(B=-2x^2-3x+5\)

\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)

c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)

\(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi x=-1

Bài 2: 
a) Ta có: \(=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)

b) Ta có: \(B=9x^2-6xy+2y^2+1\)

\(=9x^2-6xy+y^2+y^2+1\)

\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)

c) Ta có: \(E=x^2-2x+y^2-4y+6\)

\(=x^2-2x+1+y^2-4y+4+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)

10 tháng 7 2021

Bài 1 : 

a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xảy ra khi y = 1/2 

Vậy GTNN B là 3/4 khi y = 1/2 

c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)

Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2 

10 tháng 7 2021

Bài 3 : 

a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )

b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )

Bài 4 : 

\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)

Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)

Bài 5 : 

\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)

\(=2y.2x=4xy=VP\)( đpcm ) 

Bài 1 : Dùng hẳng thức triển khai các tích sau : a ) ( 2x - 3y )*(2x+3y)b ) ( 1+5a)*(1+5a)c ) (2a+3b)*(2a+3b)d) ( a+b+c)*(a+b+c) e ) ( x+y-1)*(x-y-1)Bài 2 : Rút gọn rồi tính giá trị của biểu thức :1. M = ( 2x+y)^2-(2x+y)*(2x-y)*y*(x-y)với x=-2 ; y=32. N = ( a-3b)^2-(a+3b)^2-(a-1)*(b-2) với a=1/2;b=-33. P = (2x-5)*(2x+5)-(2x+1)^2 với x= -2005 4. Q = ( y-3)*(y+3)*(y^2+9)-(y^2+2)*(y^2-2) với y = 2013^2014Bài 3 : Tìm x , biết :a ) ( x-2)^2 -(x+3)^2-4*(x+1)=5b) (...
Đọc tiếp

Bài 1 : Dùng hẳng thức triển khai các tích sau : 

a ) ( 2x - 3y )*(2x+3y)

b ) ( 1+5a)*(1+5a)

c ) (2a+3b)*(2a+3b)

d) ( a+b+c)*(a+b+c) 

e ) ( x+y-1)*(x-y-1)

Bài 2 : Rút gọn rồi tính giá trị của biểu thức :

1. M = ( 2x+y)^2-(2x+y)*(2x-y)*y*(x-y)với x=-2 ; y=3

2. N = ( a-3b)^2-(a+3b)^2-(a-1)*(b-2) với a=1/2;b=-3

3. P = (2x-5)*(2x+5)-(2x+1)^2 với x= -2005 

4. Q = ( y-3)*(y+3)*(y^2+9)-(y^2+2)*(y^2-2) với y = 2013^2014

Bài 3 : Tìm x , biết :

a ) ( x-2)^2 -(x+3)^2-4*(x+1)=5

b) ( 2x-3)*(2x+3)-(x-1)^2-3x*(x-5)=-44

c ) (5x+1)^2-(5x+3)*(5x+3)=30

d) ( x+3 )^2+(x-2)*(x+2)-2*(x-1)^2=7

Bài 4 : So sánh :

a ) A = 2005*2007 và B = 2006^2

b ) (2+1)*(2^2+1)*(2^4+1)*(2^8+1) và D = 2^32

c ) ( 3+1)*(3^2+1)*(3^4+1)*(3^16+1)=3^32-1

Bài 5 : Tính nhanh : 

1 ) 127^2+146*127+73^2

2) 9^8*2^8-(18^4+1)

3) 100^2 -99^3 +98^2-97^2+....+2^2-1^2

4 ) 180^2-220^2/125^2+150*125+75^2

5 ) ( 20^2 +18^2+16^2+....+4^2+2^2 ) -( 19^2+17^2+...+3^2+1^2 ) 

_____________________________________________________________________________

BÀI TẬP BỔ SUNG 

Bài 1 : CM các BT sau có giá trị không âm 

A = x^2-4x+9

B= 4x^2+4x+2007 

C= 9-6x+x^2

D= 1-x+x^2

Bài 2 : 

a . Cho a>b>0 ; 3a^2+3b^2 = 10ab . Tính P=a-b/a+b

b. Cho a>b>0 ; 2a^2+2b^2=5ab .Tính E= a+b/a-b 

Bài 3 : Cho biểu thức : A = ( x-2)^2-(x+5)*(x-5) 

a ) Rút gọn A 

b) Tìm x để A = 1 

c ) Tính giá trị của biểu thức A tại -3/4

Bài 6 :

a ) Tính nhanh : 2006^2-36

b ) CMR biểu thức sau có giá trị không âm :

1 . B= x^2-x+1 

2. C = 2x^2 +y^2-2xy-10x+27

6
4 tháng 8 2016

ngất

4 tháng 8 2016

choán

16 tháng 7 2019

=(x+y)^2-4(x+y)+1=3^2-4.3+1=9-12+1=-2

23 tháng 7 2019

a) Ta có : \(A=x^2+2xy+y^2-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

Đến đây tự làm nha , mik chỉ hưỡng dẫn hướng làm thôi chứ ko giải ra hết cho bạn chép đâu nha, đến đây tự thế vào là ra . Tự túc là hạnh phúc  :)

Hok tốt . Nhìn câu b mik nản quá nên thôi :)

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9