K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

a) \(x^2+10x+26+y^2+2y\)

= \(x^2+10x+25+y^2+2y+1\)

= \(\left(x+5\right)^2+\left(y+1\right)^2\)

b) \(x^2-2xy+2y^2+2y+1\)

= \(x^2-2xy+y^2+y^2+2y+1\)

= \(\left(x-y\right)^2+\left(y+1\right)^2\)

c) \(z^2-6z+5-t^2-4t\)

= \(z^2-6z+9-\left(t^2+4t+4\right)\)

= \(\left(z-3\right)^2-\left(t+2\right)^2\)

d) \(4x^2-12x-y^2+2y+1\)

Hình như câu này sai đề -_-

29 tháng 6 2017

a, \(x^2+10x+26+y^2+2y\)

\(=\left(x^2+2.x.5+5^2\right)+\left(1^2+2.1.y+y^2\right)\)

\(=\left(x+5\right)^2+\left(y+1\right)^2\)

b, \(x^2-2xy+2y^2+2y+1\)

\(=x^2-2xy+y^2+y^2+2y+1\)

\(=\left(x^2-2.x.y+y^2\right)+\left(y^2+2.y.1+1^2\right)\)

\(=\left(x-y\right)^2+\left(y+1\right)^2\)

c,\(z^2 -6z+5-t^2-4t\)

\(=-\left(t^2+4t-z^2+6z-5\right)\)

\(=-\left(t^2+2.t.2+2^2-z^2+2.z.3-3^2\right)\)

\(=-\left(\left(t^2+2.t.2+2^2\right)-\left(z^2-2.z.3+3^2\right)\right)\)

\(=-\left(\left(t+2\right)^2-\left(z-3\right)^2\right)\)

\(=\left(z-3\right)^2-\left(t+2\right)^2\)

d, Không biết làm hihi :)

30 tháng 6 2017

1, (x+y+4). (x+y-4)=(x+y)2-42=(x+y)2-16

2, (x-y+6). (x+y-6)=(x+y)2-62=(x+y)2-36

3, (x+2y+3z). (2y+3z-x)=(2y+3z)2-x2

30 tháng 6 2017

\(1.\left[\left(x+y\right)-4\right]\left[\left(x+y\right)+4\right]=\left(x+y\right)^2-4^2\)

15 tháng 6 2021

\(a.\)

\(z^2-6z+5-t^2-4t\)

\(=z^2-6z+9-\left(t^2+4t+4\right)\)

\(=\left(z-3\right)^2-\left(t+2\right)^2\)

\(b.\)

\(4x^2-12x-y^2+2y+1\)

Câu này đề sai sao ấy em !

15 tháng 6 2021

b, mik nghĩ đề sửa thành: \(4x^2-12x-y^2+2y+8\)

\(=4x^2-12x+9-y^2+2y-1\)

\(=\left(2x\right)^2-2.2.3.x+3^2-\left(y^2-2y+1\right)\)

\(=\left(2x-3\right)^2-\left(y-1\right)^2\)

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

a. $x^2+y^2+4y+13-6x$

$=(x^2-6x+9)+(y^2+4y+4)$

$=(x-3)^2+(y+2)^2$

b.

$4x^2-4xy+1+2y^2-2y$

$=(4x^2-4xy+y^2)+(y^2-2y+1)$

$=(2x-y)^2+(y-1)^2$

c.

$x^2-2xy+2y^2+2y+1$

$=(x^2-2xy+y^2)+(y^2+2y+1)$

$=(x-y)^2+(y+1)^2$

28 tháng 8 2021

a. \(x^2+y^2+4y+12-6x=\left(x^2-6x+9\right)+\left(y^2+4y+4\right)=\left(x-3\right)^2+\left(y+2\right)^2\)b. \(4x^2-4xy+1+2y^2-2y=\left(4x^2-4xy+y^2\right)+\left(y^2-2y+1\right)=\left(2x-y\right)^2+\left(y-1\right)^2\)c. \(x^2-2xy+2y^2+2y+1=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x-y\right)^2+\left(y+1\right)^2\)

17 tháng 10 2021

a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)

\(=\left(3x+2+1-2y\right)^2\)

\(=\left(3x-2y+3\right)^2\)

21 tháng 10 2021

a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)

24 tháng 8 2021

a) A = x2 - 2x + 1 - y2 + 2x - 1 

       = (x2 - 2x + 1)-( y2-2x+1) 

       = (x-1)2-(y-1)2

       = (x-1-y+1)(x-1+y-1)
b) A = x2 - 4x + 4 - y2 - 6y - 9

        = (x2 - 4x + 4)-(y2+6y+9)

        = (x-2)2-(y+3)2

        = (x-2-y-3)(x-2+y+3)
c) A = 4x2 - 4x + 1 - y2 - 8y - 16

       = (4x2 - 4x + 1) - (y2+8y+16)

       = (2x-1)2-(y+4)2

       = (2x-1-y-4)(2x-1+y+4)

d) A = x2 - 2xy + y2 - z2 + 2zt - t2

       =(x2 - 2xy + y2)-(z2- 2zt + t2)

      = (x-y)2-(z-t)2

       =(x-y-z+t)(z-y+z-t)

câu d mik có sửa lại đề vì mik thấy đề hơi sai

24 tháng 8 2021

a) A =

= x2 - y2 + 2x - 2x + 1 - 1

= x2 - y = (x-y) (x+y)

b) A=

= (x-2)2 - (y+3)2 = (x-y-5) (x+y+1)

c) A=

= (2x-1)2 - (y+4)2

= (2x+y+3) (2x-y-5)

d) đề có thể sai

 

29 tháng 6 2017

2. Viết hạng tử thích hợp vào dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.

a) \(25x^2+\cdot\cdot\cdot+81\)

\(=\left(5x\right)^2+...+9^2\)

\(=\left(5x\right)^2+2.5x.9+9^2\)

\(=25x^2+90x+81\)

b) \(64x^2-\cdot\cdot\cdot+9\)

\(=\left(8x\right)^2-\cdot\cdot\cdot+3^2\)

\(=\left(8x\right)^2-2.8x.3+3^2\)

\(=64x^2-48x+9\)

8 tháng 9 2021

\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

 

8 tháng 9 2021

a,9x^2+y^2+2z^2−18x+4z−6y+20=0

⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0

⇔x=1;y=3;z=−1

b,5x^2+5y^2+8xy+2y−2x+2=0

⇔4(x+y)2+(x−1)2+(y+1)2=0

⇔x=−y;x=1y=−1⇔x=1y=−1

c,5x^2+2y^2+4xy−2x+4y+5=0

⇔(2x+y)^2+(x−1)^2+(y+2)^2=0

⇔2x=−y;x=1;y=−2

⇔x=1;y=−2

d,x^2+4y^2+z^2=2x+12y−4z−14

⇔(x−1)^2+(2y−3)^2+(z+2)^2=0

⇔x=1;y=3/2;z=−2

e: Ta có: x^2−6x+y2+4y+2=0

⇔x^2−6x+9+y^2+4y+4−11=0

⇔(x−3)^2+(y+2)^2=11

Dấu '=' xảy ra khi x=3 và y=-2