Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chứng minh được ∆OEA = ∆OFB => AE = FB
b, Chứng minh được O E F ^ = O C D ^ => AB//CD
Gọi R đối xứng với D qua O. Khi đó DR là đường kính của (O) hay O là trung điểm RD.
Ta có: ^OBC = ^BFO (2 góc nội tiếp chắn (OA=(OB ) nên \(\Delta\)OCB ~ \(\Delta\)OBF (g,g)
Suy ra: OB2 = OC.OF hay OR2 = OC.OF. Từ đó: \(\Delta\)OCR ~ \(\Delta\)ORF (c.g.c) => ^ORC = ^OFR
Áp dụng hệ thức lượng đường tròn có: EG.EF = EA.EB = ED.ER nên tứ giác GDFR nội tiếp
Suy ra: ^OFR = ^GFR - ^GFO = ^GDR - ^GQO = ^DOQ. Từ đấy: ^ORC = ^DOQ
Do đó: CR // OQ. Xét trong \(\Delta\)DRC thấy: O trung điểm RD và OQ // CR cho nên OQ đi qua trung điểm CD (đpcm).
Ta lấy K là điểm chính giữa cung nhỏ A B ⏜
Ta chứng minh được C K ⏜ = K D ⏜
Từ đó ta có OK ⊥ CD, OK ⊥ AB => CD//AB
4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.
Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác B D C ^
Ta có K Q C ^ = 2 K M C ^ (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))
N D C ^ = K M C ^ (góc nội tiếp cùng chắn cung N C ⏜ )
Mà B D C ^ = 2 N D C ^ ⇒ K Q C ^ = B D C ^
Xét 2 tam giác BDC & KQC là các các tam giác vuông tại D và Q có hai góc ở ⇒ B C D ^ = B C Q ^ do vậy D, Q, C thẳng hàng nên KQ//PK
Chứng minh tương tự ta có ta có D, P, B thẳng hàng và DQ//PK
Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).
Trả lời:
a) (O′) có OA là đường kính và E(O′) nên OE⊥AC
Tương tự với (O) ta có BC⊥AC nên OE//BC mà OO là trung điểm của AB
⇒E là trung điểm của AC⇒ OE=12BC.
Tương tự OF=12DB mà cung BC bằng cung BD nên BC=BD⇒OE=OF hay cung OE= cung OF.
~Học tốt!~