Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay m=-5 vào (1), ta được:
\(x^2+2\left(-5+1\right)x-5-4=0\)
\(\Leftrightarrow x^2-8x-9=0\)
=>(x-9)(x+1)=0
=>x=9 hoặc x=-1
b: \(\text{Δ}=\left(2m+2\right)^2-4\left(m-4\right)=4m^2+8m+4-4m+16=4m^2+4m+20>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-3\)
\(\Leftrightarrow x_1^2+x_2^2=-3x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)
\(\Leftrightarrow\left(2m+2\right)^2+m-4=0\)
\(\Leftrightarrow4m^2+9m=0\)
=>m(4m+9)=0
=>m=0 hoặc m=-9/4
(a) Khi \(m=2,\left(1\right)\Leftrightarrow x^2-4x-5=0\left(2\right)\).
Phương trình (2) có \(a-b+c=1-\left(-4\right)+\left(-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{c}{a}=5\end{matrix}\right.\).
Vậy: Khi \(m=2,S=\left\{-1;5\right\}\).
(b) Điều kiện: \(x_1,x_2\ne0\Rightarrow m\in R\)
Phương trình có nghiệm khi:
\(\Delta'=\left(-m\right)^2-1\cdot\left(-m^2-1\right)\ge0\)
\(\Leftrightarrow2m^2+1\ge0\left(LĐ\right)\)
Suy ra, phương trình (1) có nghiệm với mọi \(m\).
Theo định lí Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1x_2=\dfrac{c}{a}=-m^2-1\end{matrix}\right.\)
Theo đề: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}=-\dfrac{5}{2}\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\dfrac{5}{2}\)
\(\Leftrightarrow2\left(x_1+x_2\right)^2+x_1x_2=0\)
\(\Leftrightarrow2\left(2m\right)^2+\left(-m^2-1\right)=0\)
\(\Leftrightarrow7m^2=1\Leftrightarrow m=\pm\dfrac{\sqrt{7}}{7}\) (thỏa mãn).
Vậy: \(m=\pm\dfrac{\sqrt{7}}{7}.\)
\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2-3\right)\)
\(=4m^2+8m+4-4m^2+12=8m+16\)
Để phương trình có hai nghiệm thì 8m+16>=0
hay m>=-2
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2-3\end{matrix}\right.\)
Theo đề, ta có: \(x_1^2+x_2^2+1=3x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2+1=0\)
\(\Leftrightarrow\left(2m+2\right)^2-5\left(m^2-3\right)+1=0\)
\(\Leftrightarrow4m^2+8m+4-5m^2+15+1=0\)
\(\Leftrightarrow-m^2+8m+20=0\)
=>(m-10)(m+2)=0
=>m=10 hoặc m=-2
a, \(\Delta'=\left(m+1\right)^2-\left(m^2-3\right)=m^2+2m+1-m^2+3=2m+4\)
Để pt có 2 nghiệm x1 ; x2 khi \(\Delta'\ge0\Leftrightarrow m\ge-2\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2-3\end{matrix}\right.\)
Ta có : \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{1}{x_1x_2}=3\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2+1}{x_1x_2}=3\)
\(\Leftrightarrow\dfrac{4\left(m^2+2m+1\right)-2\left(m^2-3\right)+1}{m^2-3}=3\)
\(\Rightarrow2m^2+8m+11=3m^2-9\Leftrightarrow m^2-8m-20=0\Leftrightarrow m=10;m=-2\)(tm)
Δ=(m+2)^2-4*2m=(m-2)^2
Để PT có hai nghiệm pb thì m-2<>0
=>m<>2
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1x_2}{4}\)
=>\(\dfrac{x_1+x_2}{x_1x_2}=\dfrac{x_1x_2}{4}\)
=>\(\dfrac{m+2}{2m}=\dfrac{2m}{4}=\dfrac{m}{2}\)
=>2m^2=2m+4
=>m^2-m-2=0
=>m=2(loại) hoặc m=-1
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
1, ĐKXĐ:\(x\ne2,y\ne1\)
Đặt `1/(x-2)` = a, `1/(y-1)` = b
\(Hệ.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\\b=\dfrac{3}{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{y-1}=\dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\3y-3=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\\y=\dfrac{8}{3}\end{matrix}\right.\)\(2,\Delta'=\left[-\left(m+1\right)\right]^2-4m=m^2+2m+1-4m=m^2-2m+1=\left(m-1\right)^2\ge0\)
Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m-1\ne0\Leftrightarrow m\ne1\)
b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=4m\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2-x_1x_2=3\\ \Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=3\\ \Leftrightarrow\left(2m+2\right)^2-5.4m-3=0\\ \Leftrightarrow4m^2+8m+4-20m-3=0\\ \Leftrightarrow4m^2-12m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+2\sqrt{2}}{2}\\x=\dfrac{3-2\sqrt{2}}{2}\end{matrix}\right.\)
a. thay m=-4 vào (1) ta có:
\(x^2-5x-6=0\)
Δ=b\(^2\)-4ac= (-5)\(^2\) - 4.1.(-6)= 25 + 24= 49 > 0
\(\sqrt{\Delta}=\sqrt{49}=7\)
x\(_1\)=\(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+7}{2}\)=6
x\(_2\)=\(\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-7}{2}\)=-1
vậy khi x=-4 thì pt đã cho có 2 nghiệm x\(_1\)=6; x\(_2\)=-1
1. Bạn tự giải
2. Phương trình có 2 nghiệm khác 0 khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-\left(m^2-1\right)>0\\m^2-1\ne0\end{matrix}\right.\) \(\Leftrightarrow m\ne\pm1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{3}{4}\Rightarrow4\left(x_1+x_2\right)=3x_1x_2\)
\(\Leftrightarrow8m=3\left(m^2-1\right)\)
\(\Leftrightarrow3m^2-8m-3=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{1}{3}\end{matrix}\right.\)