Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 134xy chia hết cho 5
=>y=0 hoặc y=5
+)Nếu y=0
=>134xy=134x0
Để 134x0 chia hết cho 9 thì 1+ 3 + 4 + x + 0 = 8 + x chia hết cho 9
=>x=1
+)Nếu y=5
=>134xy=134x5
Để 134x5 chia hết cho 9 thì 1 + 3 + 4 + x + 5 = 13 chia hết cho 9
=>x = 5
Vậy y = 0 thì x = 1 hoặc y = 5 thì x = 5
2) 1x8y2 chia hết cho 4 và 9
1x8y2 chia hết cho 4 <=>y2 chia hết cho 4 <=>y={1;5;9}
y=1=>1x812 chia hết cho 9<=>(1+x+8+1+2) chia hết cho 9
<=>12+x chia hết cho 9 <=>x=6
y=5=>1x852 chia hết cho 9<=>(1+x+8+5+2) chia hết cho 9
<=>16+x chia hết cho 9 <=>x=2
y=9=>1x892 chia hết cho 9<=>(1+x+8+9+2) chia hết cho 9
<=>20+x chia hết cho 9 <=>x=7
4. x + 16 chia hết cho x + 1
Ta có
x + 16 = ( x + 1 ) + 15
Mà x + 1 chia hết cho 1
=> 15 phải chia hết cho x + 1
=> x + 1 thuộc Ư(15)
Ư(15) = { 1 ; 15 ; 3 ; 5 }
TH1 : x + 1 = 1 => x = 1 - 1 = 0
TH2 : x + 1 = 15 => x = 15 - 1 = 14
TH3 : x + 1 = 3 => x = 3 - 1 = 2
TH4 : x + 1 = 5 => x = 5 - 1 = 4
Vậy x = 0 ; 14 ; 4 ; 2
1
a . Để A chia hết cho 9 thì các số hạng của nó phải chia hết cho 9
Mà 963 , 2439 , 361 chia hết cho 9
=> x cũng phải chia hết cho 9
Vậy điều kiện để A chia hết cho 9 là x chia hết cho 9
Và ngược lại để A ko chia hết cho 9 thì x không chia hết cho 9
b. Tương tự phần trên nha
Giải
Bài 1:
a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)
=12+32x (3+32)+.......+358 x (3+32)=12+32 x 12+..........+358 x 12
=12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)
Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.
=> Tổng này chia hết cho 4.
Bài 2:
Ta có: 12a chia hết cho 12; 36b chia hết cho 12.
=> tổng này chia hết cho 12.
Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)
Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.
=> Tổng này chia hết cho 5.
Bài 4:
a chia 11 dư 5 dạng tổng quát của a là:
\(a=11k+5\left(k\in N\right)\)
b chia 11 dư 6 dạng tổng quát của b là:
\(b=11k+6\left(k\in N\right)\)
Nên: \(a+b\)
\(=11k+5+11k+6\)
\(=\left(11k+11k\right)+\left(5+6\right)\)
\(=k\cdot\left(11+11\right)+11\)
\(=22k+11\)
\(=11\cdot\left(2k+1\right)\)
Mà: \(11\cdot\left(2k+1\right)\) ⋮ 11
\(\Rightarrow a+b\) ⋮ 11
Bài 1: Mình làm rồi nhé !
Bài 2:
a) Dạng tổng quát của A là:
\(a=36k+24\left(k\in N\right)\)
b) a chia hết cho 6 vì:
Ta có: \(36k\) ⋮ 6 và 24 ⋮ 6
\(\Rightarrow a=36k+24\) ⋮ 6
c) a không chia hết cho 9 vì:
Ta có: \(36k\) ⋮ 9 và 24 không chia hết cho 9
\(\Rightarrow a=36k+24\) không chia hết cho 9
1
a) 102005-1 không chia hết cho cả 3 và 9 vì 1 + 9 = 10 ( không tính số 0)
b) 102006+ 2 chia hết cho 3 nhưng không chia hết cho 9 vì: 1 + 2=3 ( không tính số 0)
2
a) *\(\in\){ 1;4;7}
b ) *\(\in\){ 6}
c) *(trước)\(\in\){ 0,3,6,9}
*(sau)\(\in\){ 0}
d) * ( trước) \(\in\){ 7}
* ( sau) \(\in\){ 0}