Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
b: Xét ΔBFC có
BH vừa là đường cao, vừa là phân giác
=>ΔBFC cân tại B
c: Xét ΔBAC và ΔBDF có
BA=BD
góc ABC chung
BC=BF
=>ΔBAC=ΔBDF
=>góc BDF=góc BAC=90 độ
=>D,E,F thẳng hàng
Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
a: AB=8(cm)
b: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BA=BD
BH chung
Do đó:ΔBAH=ΔBDH
Suy ra: HA=HD
c: Xét ΔAHK vuông tại A và ΔDHC vuông tại D có
HA=HD
\(\widehat{AHK}=\widehat{DHC}\)
Do đó: ΔAHK=ΔDHC
Suy ra: AK=DC
Ta có: BA+AK=BK
BD+DC=BC
mà BA=BD
và AK=DC
nên BC=BK
Bài 1: Ta có hình vẽ sau:
a)Xét ΔABM và ΔECM có:
BM = CM (gt)
\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)
MA = ME (gt)
=> ΔABM = ΔACM (c.g.c) (đpcm)
b) Vì ΔABM = ΔECM (ý a)
=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> AB // CE (đpcm)
Bài 5: Ta có hình vẽ sau:
a) Vì OA = OB (gt) và AC = BD (gt)
=> OC = OD
Xét ΔOAD và ΔOBC có:
OA = OB (gt)
\(\widehat{O}\) : Chung
OC = OD (cm trên)
=> ΔOAD = ΔOBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)(đpcm)
b) Vì ΔOAD = ΔOBC(ý a)
=> \(\widehat{OBC}=\widehat{OAD}\) và \(\widehat{ODA}=\widehat{OCB}\)
(những cặp góc tương ứng)
Xét ΔEAC và ΔEBD có:
\(\widehat{OBC}=\widehat{OAD}\) (cm trên)
AC = BD (gt)
\(\widehat{ODA}=\widehat{OCB}\) (cm trên)
=> ΔEAC = ΔEBD (g.c.g) (đpcm)
c) Vì ΔEAC = ΔEBD (ý b)
=> EA = EB (2 cạnh tương ứng)
Xét ΔOAE và ΔOBE có:
OA = OB (gt)
\(\widehat{OBC}=\widehat{OAD}\) (đã cm)
EA = EB (cm trên)
=> ΔOAE = ΔOBE (c.g.c)
=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)
=> OE là phân giác của \(\widehat{xOy}\)
a, áp dụng định lí py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
=>\(BC^2\)=64+36=100(cm)
=>BC=10cm
vậy BC=10cm
b,xét 2t.giác vuông ABE và DBE có:
EB chung
AB=BD(gt)
=>t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)
c,xét 2 t.giác vuông AEF và t.giác DEC có:
AE=DE(theo câu b)
\(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)
=>t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn)
=>AF=DC mà BA=BD(gt) suy ra BF=BC
d,gọi O là giao điểm của BE và CF
xét t.giác BFO và t.giác BCO có:
BF=BC(theo câu c)
\(\widehat{FBO}\)=\(\widehat{CBO}\)(theo câu b)
BO cạnh chung
=> t.giác BFO=t.giác BCO(c.g.c)
=>CO=OF =>O là trung điểm của CF(1); \(\widehat{COB}\)=\(\widehat{FOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{COB}\)=\(\widehat{FOB}\)=90 độ =>BO\(\perp\)CF(2)
Từ (1) và (2) suy ra BE là trung trực của CF
học tốt!
a) Ta có : tam giác ABC vuông tại A
=> góc B + góc C = 90\(^o\)
Mà góc B = 53\(^o\)
=> góc C = góc A - góc B
=> góc C = 90\(^o\)- 53\(^o\)
=> góc C = 37\(^o\)
b) Xét tam giác BEA và tam giác BED có :
BD = BA (gt)
BE là cạnh chung
góc ABE = góc DBE ( BE là tia p/giác của góc B)
=> tam giác BEA = tam giác BED
c) Ta có CH vuông góc với BE
=> Tam giác BHC và tam giác BHF là tam giác vuông
Xét tam giác vuông BHF và tam giác vuông BHC có:
BH là cạnh chung
góc FBH = góc HBC ( BE là tia p/giác của góc B)
=> tam giác vuông BHF = tam giác vuông BHC ( cạnh góc vuông + góc nhọn )
=> BF = BC ( 2 cạnh tương ứng ) (*)
d) Xét tam giác BEF và tam giác BEC có :
BF = BC ( theo (*))
góc FBE = góc CBE ( BE là tia p/giác của góc B)
BE là cạnh chung
=> tam giác BEF = tam giác BEC (c . g . c )
=> góc BFD = góc BCA ( 2 góc tương ứng ) (**)
Xét tam giác BAC và tam giác BDF có :
góc BFD = góc BCA ( theo (**))
góc B là góc chung
BA = BD (gt)
=> tam giác BAC = tam giác BDF ( g . c . g )
=> góc FDB = góc CAB ( 2 góc tương ứng )
Xét tam giác BED có : góc EBD + góc BED + góc BDE = 180\(^o\)
Mà :góc FDB = góc CAB = 90\(^o\)
góc EBD = \(\frac{1}{2}\)góc B = \(\frac{53}{2}\)= 26,5\(^o\)
=> góc BED = 180\(^o\)- (90\(^o\)+ 26,5\(^o\))
=> góc BED = 180\(^o\)- 116,5\(^o\)
=> góc BED = 63,5\(^o\)
Mặt khác : Tam giác BED = tam giác BEA
=> góc AEB = BED = 63,5\(^o\)
Xét tam giác FAE có :góc FAE + góc FEA + góc AFE = 180\(^o\)
Mà : góc FAE = 90\(^o\), góc AFE = góc ACB = 37\(^o\)
=> FEA = 180\(^o\)- (90\(^o\)+ 37\(^o\))
=> FEA = 180\(^o\)- 127\(^o\)
=> FEA = 53\(^o\)
Lại có : góc FAD = góc FEA + góc AEB + góc BED
=> FAD = 53\(^o\)+ 63,5\(^o\)+ 63,5 \(^o\)
=> FAD = 180\(^o\)
=> D, F, E thẳng hàng
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
b: Xét ΔBFC có
BH là đường cao
BH là đường phân giác
Do đó: ΔBFC cân tại B
=>BF=BC
c: Xét ΔBDF và ΔBAC có
BD=BA
\(\widehat{DBF}\) chung
BF=BC
Do đó: ΔBDF=ΔBAC
=>DF=AC
Ta có: AE+EC=AC
DE+EF=DF
mà AE=DE(ΔBAE=ΔBDE)
và AC=DF
nên EC=EF
Ta có: ΔBAE=ΔBDE
=>\(\widehat{BAE}=\widehat{BDE}\)
=>\(\widehat{BDE}=90^0\)
=>DE\(\perp\)BC
Xét ΔEAF vuông tại A và ΔEDC vuông tại E có
EA=ED
EF=EC
Do đó: ΔEAF=ΔEDC
=>\(\widehat{AEF}=\widehat{DEC}\)
mà \(\widehat{DEC}+\widehat{DEA}=180^0\)(hai góc kề bù)
nên \(\widehat{DEA}+\widehat{AEF}=180^0\)
=>D,E,F thẳng hàng