Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: F là hình chiếu của E trên AC
a: Xét ΔCAB có
E là trung điểm của CB
EF//AB
=>F là trung điểm của AC
Xét ΔCAB có
E là trung điểm của CB
ED//AC
=>D là trung điểm của AB
Xét ΔABC có EF//AB
nên EF/Ab=CE/CB=1/2
=>EF=1/2AB=DB
Xét tứ giác BDFE có
FE//BD
FE=BD
=>BDFE là hình bình hành
b: Xét ΔABC có AD/AB=AF/AC
nên DF//BC
=>DF//EH
ΔHAC vuông tại H có HF là trung tuyến
nên HF=AC/2
=>HF=ED
Xét tứ giác EHDF có
EH//DF
ED=HF
=>EHDF là hình thang cân
c: Xét tứ giác ABCN có
F là trung điểm chung của AC và BN
=>ABCN là hình bình hành
=>AN//CB
Xét tứ giác AMCE có
F là trung điểm chung của AC và ME
=>AMCE là hình bình hành
=>AM//CE
=>AM//CB
mà AN//CB
nên A,N,M thẳng hàng
Xét ΔABC có
E là trung điểm của BC
EF//AB
Do đó: F là trung điểm của AC
Xét tứ giác AECM có
F là trung điểm của AC
F là trung điểm của EM
Do đó: AECM là hình bình hành
=>AM//CE
=>AM//CB
Xét tứ giác NMBE có
F là trung điểm chung của NB và ME
=>NMBE là hình bình hành
=>NM//BE
=>NM//BC
AM//BC
NM//BC
mà AM,NM có điểm chung là M
nên M,N,A thẳng hàng
Xét tứ giác
a: Xét tứ giác ADEF có
góc ADE=góc AFE=góc FAD=90 độ
=>ADEF là hình chữ nhật
b: Xét ΔABC có
E là trung điểm của CB
ED//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
E là trung điểm của CB
EF//AB
Do đó: F là trung điểm của AC
Xét ΔABC có
D,F lần lượt là trung điểm của AB,AC
=>DF là đường trung bình
=>DF//BC và DF=1/2BC
c: DF//BC và DF=1/2BC
mà \(E\in BC;BE=\dfrac{1}{2}BC\)
nên DF//BE và DF=BE
Xét tứ giác BDFE có
DF//BE
DF=BE
Do đó: BDFE là hình bình hành
d: Xét ΔABC có
E là trung điểm của CB
EF//AB
Do đó: F là trung điểm của AC
e: Xét ΔABC có
D,E lần lượt là trung điểm của BA,BC
=>DE là đường trung bình
=>DE=1/2AC
ΔHAC vuông tại H
mà HF là trung tuyến
nên HF=AC/2
=>DE=HF
Xét tứ giác DHEF có
DF//EH
DE=FH
Do đó: DHEF là hình thang cân
Để chứng minh ADEF là hình chữ nhật, ta cần chứng minh các đẳng thức đường cao AH = trung tuyến AE và hình chiếu D, F của E trên AB, AC vuông góc với AB, AC.
a) Chứng minh AH = AE: Vì tam giác ABC là tam giác vuông tại A, nên đường cao AH cũng là đường cao của tam giác vuông ABC. Do đó, ta có AH = BH. Từ tam giác ABC, ta có AE là trung tuyến nên AE = EC. Vậy, AH = AE.
b) Chứng minh AD = AF: Ta có hai tam giác vuông ADE và AFE có cạnh chung AE. Vì AE là trung tuyến nên ta có DE = FE, và góc ADE = góc AFE = 90 độ (do DE và FE vuông góc với AB, AC). Do đó, ta có hai tam giác ADE và AFE đồng dạng (cạnh góc). Từ đó suy ra, AD = AF.
Vì AH = AE và AD = AF, nên tứ giác ADEF là hình chữ nhật.
c) Chứng minh BDFE là hình bình hành: Ta đã chứng minh được AD = AF, nên BD = BF (do AB < AC). Vì DE = EF (vì trung tuyến), và góc EDF = góc EBF = 90 độ (hình chiếu của E trên AB, AC vuông góc với AB, AC), nên ta có hai cạnh và một góc tương đương nhau. Do đó, tứ giác BDFE là hình bình hành.
d) Chứng minh F là trung điểm của AC: Vì AE là trung tuyến của tam giác ABC, nên F là trung điểm của AC.
Vậy, ta đã chứng minh được các yêu cầu đề bài.
Bạn vẽ hình giúp mình nhé!
a. Cm: DFEH là hình thang cân
Xét tam giác AHC vuông tại H có HF là đường trung tuyến ứng với cạnh huyền.
\(\Rightarrow HF=\dfrac{AC}{2}\left(1\right)\)
Xét tam giác ABC có: \(\left\{{}\begin{matrix}AD=DB\\BE=EC\end{matrix}\right.\)
\(\Rightarrow\)DE là đường trung bình trong tam giác ABC
\(\Rightarrow\) \(DE=\dfrac{AC}{2}\left(2\right)\)
Lại có: Tam giác ABC có: \(\left\{{}\begin{matrix}AD=DB\\AF=FC\end{matrix}\right.\) \(\Rightarrow\)DF là đường trung bình của tam giác ABC
\(\Rightarrow\) DF//BC
\(\Rightarrow\) Tứ giác DFEH là hình thang (3)
Từ (1),(2), và (3) suy ra: DFEH là hình thang cân.
b. Cm: I là trung điểm của DF
Ta có: DFEH là hình thang cân
\(\Rightarrow DE=HF=\dfrac{AC}{2}=AF\)
Mà DE//AC \(\Rightarrow\) DE//AF
\(\Rightarrow\)Tứ giác AFED là hình bình hành
Mà \(I=DF\cap AE\)
\(\Rightarrow\) I là trung điểm của DF
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
a: Sửa đề: EF vuông góc AC
Xét ΔABC có
E là trung điểm của BC
EF//AB
=>F là trung điểm của AC
Xét ΔABC có
E là trung điểm của BC
ED//AC
=>D là trung điểm của AB
=>BD//FE và BD=FE
=>BDFE là hình bình hành
b: Xét ΔABC có AD/AB=AF/AC
nên DF//BC
=>DF//EH
ΔHAC vuông tại H có HF là trung tuyến
nên HF=AC/2=ED
Xét tứ giác EHDF có
EH//DF
ED=FH
=>EHDF là hình thang cân