Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{2a+b+c}{b+c}=\frac{2b+c+a}{c+a}=\frac{2c+a+b}{a+b}\Rightarrow\frac{2a}{b+c}+1=\frac{2b}{a+c}+1=\frac{2c}{a+b}+1\)
=> \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{3}{2}\)
^_^
Bài 1: Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=k\)
\(\Rightarrow\hept{\begin{cases}a=2016k\\b=2017k\\c=2018k\end{cases}}\).Thay vào M,ta có:
\(M=4\left(2016k-2017k\right)\left(2017k-2018k\right)-\left(2018k-2016k\right)^2\)
\(=4.\left(-1k\right)\left(-1k\right)-\left(2k\right)^2\)
\(=4k^2-4k^2=0\)
Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\left(1\right)\)
*)Xét \(x+y+z\ne0\left(2\right)\). Từ (1) và (2)
\(\Rightarrow x=y=z\). Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=2\cdot2\cdot2=8\)
*)Xét \(x+y+z=0\)\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=\frac{-z}{y}\cdot\frac{-x}{z}\cdot\frac{-y}{x}=-1\)
a)
Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{\begin{matrix}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\) (1)
Ta có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(\Rightarrow B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)
Thế (1) vào biểu thức B
\(\Rightarrow B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}\)
\(\Rightarrow B=2.2.2=8\)
Vậy biểu thức \(B=8\)
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{y+x+t}=\frac{t}{x+y+z}=\frac{x+y+z+t}{2\left(x+y+z+t\right)}=\frac{1}{2}\)
=>2x=y+z+t
2y=x+z+t
2z+x+y+t
2t=x+y+z
=>x+y=2(z+t)(1)
y+z=2(x+t)(2)
z+t=2(x+y)(3)
t+x=2(y+z)(4)
Thay 1;2;3 và 4 vào P
=>P=2+2+2+2=8
bài 2 tương tự
Bài 1:
\(A=\frac{a+b}{b+c}.\)
Ta có:
\(\frac{b}{a}=2\Rightarrow\frac{b}{2}=\frac{a}{1}\) (1)
\(\frac{c}{b}=3\Rightarrow\frac{c}{3}=\frac{b}{1}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{b}{2}=\frac{c}{6}.\)
\(\Rightarrow\frac{a}{1}=\frac{b}{2}=\frac{c}{6}=\frac{a+b}{3}=\frac{b+c}{8}.\)
\(\Rightarrow A=\frac{a+b}{b+c}=\frac{3}{8}\)
Vậy \(A=\frac{a+b}{b+c}=\frac{3}{8}.\)
Bài 2:
a) \(\frac{72-x}{7}=\frac{x-40}{9}\)
\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)
\(\Rightarrow648-9x=7x-280\)
\(\Rightarrow648+280=7x+9x\)
\(\Rightarrow928=16x\)
\(\Rightarrow x=928:16\)
\(\Rightarrow x=58\)
Vậy \(x=58.\)
b) \(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\Rightarrow\left(x+4\right).\left(x+4\right)=5.20\)
\(\Rightarrow\left(x+4\right).\left(x+4\right)=100\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow x+4=\pm10.\)
\(\Rightarrow\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10-4\\x=\left(-10\right)-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=-14\end{matrix}\right.\)
Vậy \(x\in\left\{6;-14\right\}.\)
Chúc bạn học tốt!
Bài 2:
a, \(\frac{72-x}{7}=\frac{x-40}{9}\)
\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)
\(\Rightarrow9.72-9.x=7.x-7.40\)
\(\Rightarrow648-9x=7x-280\)
\(\Rightarrow-9x-7x=-280-648\)
\(\Rightarrow-16x=-648\)
\(\Rightarrow x=58\)
Vậy \(x=58\)
Cần gấp không vậy bạn
Chiều mai mình nộp ạ