K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2019

\(A=x^2+4x+100\)

\(A=x^2+2.x.2+2^2+96\)

\(A=\left(x+2\right)^2+96\)

           \(\left(x+2\right)^2+96\le0\)

           \(\left(x+2\right)^2+96\le96\)

    \(\Leftrightarrow A\le96\)

\(A_{min}\Leftrightarrow A=10\)

Dấu "=" xảy ra : \(\left(x+2\right)^20\)

                             \(x+2=0\)

                             \(x=-2\)

     

25 tháng 10 2019

Thay hộ mik cái dấu \(\le\)thành dấu \(\ge\)vs ak

25 tháng 10 2019

Bài 1:Tìm giá trị nhỏ nhất

A= x2+4x+100

A= (x\(^2\)+4x+4)+96

A= (x\(^2\)+2.x.2+2\(^2\))+96

A= (x+2)\(^2\)+96

Vì (x+2)\(^2\)0 x

(x+2)\(^2\)+96 ≥ 96 x

Vậy min A = 96 ⇔ x+2=0

⇔ x = -2

25 tháng 10 2019

B1 có bạn làm rồi

B2, B=-2.(x\(^2\)-3x+2)

=-2.(x\(^2\)-2.\(\frac{3}{2}\)x+\(\frac{9}{4}\)+2-\(\frac{9}{4}\))

=-2.[(x-\(\frac{3}{2}\))\(^2\)-\(\frac{1}{4}\)]

=-2.(x-\(\frac{3}{2}\))\(^2\)+\(\frac{1}{2}\)

Có -2.(x-\(\frac{3}{2}\))\(^2\)≤0∀x

⇒-2.(x-\(\frac{3}{2}\))\(^2\)+\(\frac{1}{2}\)\(\frac{1}{2}\)∀x

Dấu = xảy ra⇔x=\(\frac{3}{2}\)

GTLN của B=\(\frac{1}{2}\)

12 tháng 9 2021

a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)

b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)

c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)

\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)

d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)

\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)

e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)

\(minE=-20\Leftrightarrow x=-3\)

f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)

12 tháng 9 2021

\(A=x^2+3x+4=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\)

Do \(\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)

Mấy câu còn lại làm tương tự nhé em^^

a: Ta có: \(A=x^2-2xy+5y^2+4y+51\)

\(=x^2-2xy+y^2+4y^2+4y+1+50\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\forall x,y\)

Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)

27 tháng 9 2021

a) \(A=x^2-2xy+5y^2+4y+51=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+50=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\)

\(minA=50\Leftrightarrow x=y=-\dfrac{1}{2}\)

c) \(C=\dfrac{9}{-2x^2+4x-7}=\dfrac{9}{-2\left(x^2-2x+1\right)-5}=\dfrac{9}{-2\left(x-1\right)^2-5}\ge\dfrac{9}{-5}=-\dfrac{9}{5}\)

\(minC=-\dfrac{9}{5}\Leftrightarrow x=1\)

d) \(10x^2+4y^2-4xy+8x-4y+20=\left[4y^2-4y\left(x+1\right)+\left(x+1\right)^2\right]+\left(9x^2+6x+1\right)+18=\left(2y-x-1\right)^2+\left(3x+1\right)^2+18\ge18\)

\(minD=18\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

e) \(E=9x^2+2y^2+6xy-6x-8y+10=\left[9x^2+6x\left(y-1\right)+\left(y-1\right)^2\right]+\left(y^2-6x+9\right)=\left(3x+y-1\right)^2+\left(y-3\right)^2\ge0\)

\(minE=0\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=3\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
24 tháng 9 2020

Bài 1:

a) $9x^2-2x-1=(3x)^2-2.3x.\frac{1}{3}+(\frac{1}{3})^2-\frac{10}{9}$

$=(3x-\frac{1}{3})^2-\frac{10}{9}$

$\geq 0-\frac{10}{9}=\frac{-10}{9}$

Vậy GTNN của biểu thức là $\frac{-10}{9}$. Giá trị này đạt tại $3x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{9}$

b)

$(2x-5)(x-1)=2x^2-7x+5=2(x^2-\frac{7}{2}x)+5$

$=2[x^2-2.\frac{7}{4}x+(\frac{7}{4})^2]-\frac{9}{8}$

$=2(x-\frac{7}{4})^2-\frac{9}{8}$

$\geq 2.0-\frac{9}{8}=-\frac{9}{8}$

Vậy GTNN của biểu thức là $\frac{-9}{8}$ tại $x=\frac{7}{4}$

24 tháng 9 2020

Giúp em bài bất đẳng thức với ạ

NV
17 tháng 4 2022

\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)

GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)

Biểu thức ko tồn tại GTLN

13 tháng 7 2020

a) A = 5x2 - 20x + 2020 = 5(x2 - 4x + 4) + 2000 = 5(x - 2)2 + 2000 \(\ge\)2000 \(\forall\)x

Dấu "=" xảy ra <=> x  - 2 = 0 <=> x = 2

Vậy MinA = 2000 khi x = 2+

b) B = -3x2 - 6x + 15 = -3(x2 + 2x + 1) + 18 = -3(x + 1)2 + 18 \(\le\)18 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1

Vậy MaxB = 18 khi x = -1

c) C = 9x2 + 2x + 7 = (9x2 + 2x + 1/9) + 62/9 = (3x  + 1/3)2  + 62/9 \(\ge\)62/9 \(\forall\)x

Dấu "=" xảy ra <=> 3x + 1/3 = 0 <=> x  = -1/9

Vậy MinC = 62/9 khi x = -1/9

d) D = 16 - 2x2 - 8x = -2(x2 + 4x + 4) + 24 = -2(x + 2)2 + 24 \(\le\) 24 \(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy MaxD = 24 khi x = -2

24 tháng 5 2015

a)4x2-4x+3

=[(2x)2-4x+1]+2

=(2x+1)2+2 \(\ge\)2 với mọi x

Vậy GTNN của 4x2-4x+3 là 2 tại 

(2x+1)2+2=2

<=>(2x+1)2     =0

<=>2x+1       =0

<=>x             =\(\frac{-1}{2}\)

b)-x2+2x-3

=(-x2+2x-1)-2

= -(x2-2x+1)-2

=-(x-1)2-2 \(\le\)-2

Vậy GTLN của -x2+2x-3 là -2 tại :

-(x-1)2-2=-2

<=>-(x-1)2  =0

<=>x-1      =0

<=>x         =1