Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\left(x^2+1\right)\times\left(x-4\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+1>0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+1< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2>-1\\x>4\end{matrix}\right.\\\left\{{}\begin{matrix}x^2< -1\\x< 4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2>-1\\x>4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)
Đề bài 2 là gì ạ?
Bài 2:
a: A=(x-2)^2+(y+3)^2>=0
Dấu = xảy ra khi x=2 và y=-3
b: B=(x-5)^2+(y-1)^2-5>=-5
Dấu = xảy ra khi x=5 và y=1
\(A=3^1+3^2+3^3+...+3^{2010}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2011}\)
\(\Rightarrow2A=3^{2011}-3\)
\(\Rightarrow A=\frac{3^{2011}-2}{2}\)
\(\Leftrightarrow2A+3=3^{2011}-3+3=2^{2011}\)
\(\Rightarrow x=2011\)
Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29
2S = 2(1 + 2 + 22 + 23 + ... + 29)
2S = 2 + 22 + 23 + ... + 210
2S - S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)
S = 210 - 1 = 28.4 - 1
Vậy S < 5 x 28
\(\left(x-1\right)\left(x+3\right)< 0\)
thì x-1 và x+3 khác dấu
\(th1\Leftrightarrow\orbr{\begin{cases}x-1< 0\\x+3>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 1\\x>-3\end{cases}\Leftrightarrow}-3< x< 1\left(tm\right)}\)
\(th2\Leftrightarrow\orbr{\begin{cases}x-1>0\\x+3< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}\Leftrightarrow}1< x< -3\left(vl\right)}\)
lúc nãy mk quên kl câu b nha thêm vào
\(\left(x+2\right)\left(5-x\right)>0\)
thì x+2 và 5-x cùng dấu
\(th1\Leftrightarrow\orbr{\begin{cases}x+2< 0\\5-x< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< -2\\x>5\end{cases}\Leftrightarrow}5< x< -2\left(vl\right)}\)
\(th2\Leftrightarrow\orbr{\begin{cases}x+2>0\\5-x>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>-2\\x< 5\end{cases}\Leftrightarrow}-2< x< 5\left(tm\right)}\)
với -2<x<5 thì
\(x\in\left\{-1;0;1;2;3;4\right\}\)