K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác AQCP có : 

M là trung điểm PQ ( Q là điểm đối xứng với P qua M )

M là trung điểm AC 

=> AQCP là hình bình hành 

Vì AP\(\perp\)BC 

=> AQCP là hình chữ nhật 

b) Vì AQCP là hình chữ nhật

=> AQ = PC 

=> AQ//PC 

=> AQ//BP ( P\(\in\)BC )

Vì ∆ABC cân tại A 

Mà AP là đường cao 

=> AP là phân giác và trung trực 

=> PC = PB 

Mà AQ = PC 

=> BP = AQ 

Xét tứ giác AQPB có : 

AQ//BP (cmt)

AQ = BP (cmt)

=> AQPB là hình bình hành 

c) Vì M là trung điểm AC 

MN //BC 

=> N là trung điểm AB 

Xét ∆ABC có : 

N là trung điểm AB 

P là trung điểm BC ( AP là trung tuyến) 

=> NP là đường trung bình ∆ABC 

=> NP//AC 

=> NP//AM ( M \(\in\)BC )

Xét ∆ABC có : 

M là trung điểm AC 

P là trung điểm BC

=> MP là đường trung bình ∆ABC

=> MP//AB

=> MP//NA ( N \(\in\)AB )

Xét tứ giác ANPM có : 

MP//NA (cmt)

AM//NP (cmt)

=> ANPM là hình bình hành 

Mà AP là phân giác BAC (cmt)

=> NAMP là hình thoi

9 tháng 9 2019

B A C D x y O

1) Theo bài ra ta có:

BD//AC; AB//CD

=> ABDC là hình bình hành

mà AB=AC 

=> ABCD là hình thoi

Ta lại có \(\widehat{A}=90^o\)

=> ABCD là vuông.

b) Hai đường chéo của hình vuông cắt nhau tại trung điểm mỗi đường

Gọi O' là  giao điểm của BC và AD 

=> O' là trung điểm BC 

=> O' trùng điểm O

=> O là trung điểm AD

=> A, O, D thẳng hàng

22 tháng 7 2019

A B C D M N O

1) Xét tam giác AOM và tam giác CON có:

OA = OC ( O là giao điểm hai đường chéo của hình bình hành)

^AOM =^NOC ( đối đỉnh)

^MAO =NCO ( so le trong , AM// NC)

=> Tam giác AOM = tam giác CON (1)

=> OM=ON 

2) Vì AB//DC

=> AM//NC

và từ (1) suy ra AM=NC

=> AMNC là hình bình hành

a) Vì M là trung điểm AB 

=> AM = MB 

Vì N là trung điểm BC 

=> BN = NC 

=> MN là đường trung bình ∆ABC 

=> MN//AC 

=> AMNC là hình thang (dpcm) 

2) Vì AB = AD (gt)

=> ∆ABD cân tại A 

=> ABD = ADB 

Ta có AM = MB (cmt)

Q là trung điểm AD 

=> AQ = QD 

=> MQ là đường trung bình ∆ABD 

=> QM//DB 

=> QMBD là hình thang 

Mà ABD = ADB (cmt)

= > QMBD là hình thang cân (dpcm)

Bài 22 : 

Vì ABCD là hình bình hành 

=> AB = DC 

Mà M là trung điểm AB 

=> AM = MB 

Mà N là trung điểm DC 

=> DN = NC 

=> AM = DN 

Mà AB//DC 

=> DN//AM 

=> AMND là hình bình hành 

Chứng minh tương tự ta có : MBCN là hình bình hành 

22 tháng 7 2019

A B C D I K

a) AI là phân giác góc BAD

=> ^BAI=^IAD (=1/2 ^BAD) (1)

mà ^IAD=^ABI ( so le trong)

=> ^BAI=^ABI

=> Tam giác ABI cân

b) Vì CK là phân giác góc DCB

=> ^BCK=^KCD (=1/2 ^BCD) (2)

Mà ^BAD =^ BCD  (3)

Từ (1) ; (2); (3) => ^BIA = ^KCB 

3) Ta có: ^BIA =^KCB ( chưng minh câu b)

và ^BAI= ^BIA  ( tam giác BAI cân)

=> ^KCB=^BIA 

=> AI//KC

mà AK//IC ( vì DA//BC)

=> AKCI là hình bình hành