Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác DAC và tam giác EAB có:
AD=AE(giả thiết)
góc A là góc chung
AB=AC(tính chất tam giác cân)
Do đó, tam giác DAC=tam giác EAB(c.g.c)
=>CD=BE(2 cạnh tương ứng)
b)Vì tam giác DAC=tam giác EAB(c.g.c) nên góc ABE= góc ACD(2 góc tương ứng)
c)Ta có: góc ABC= góc ACB(tính chất tam giác cân) và góc ABE= góc ACD (chứng minh trên)
=>góc ABC- góc ABE=góc ACB-góc ACD hay góc BEC = góc DCB => tam giác KBC cân tại K
Vậy tam giác KBC cân tại K
a)Xét tam giác DAC và tam giác EAB ta có: AD=AE(gt) góc A là góc chung AB=AC(gt) suy ra tam giác DAC=tam giác EAB(c.g.c) =>CD=BE(2 cạnh tương ứng) b)Vì tam giác DAC=tam giác EAB(c.g.c) nên góc ABE= góc ACD(2 góc tương ứng) c)Ta có: góc ABC= góc ACB(tính chất tam giác cân) và góc ABE= góc ACD (chứng minh trên) =>góc ABC- góc ABE=góc ACB-góc ACD hay góc BEC = góc DCB => tam giác KBC cân tại K Vậy tam giác KBC cân tại K câu trả lời đây nha bạn!!!
Xét tg: EAB và tg DAC có :
AE = AD ( gt)
^A chung
AB = AC ( gt)
=> tg EAB = tg DAC ( c.g.c) => BE = CD; ^ABE = ^ACD ( cặp cạnh, góc tương ứng = nhau)
c) Xét tg BDC và tg CEB có:
BC chung
^DBC = ^ECB (gt)
BD =CE
=> tg BDC = tg ECB ( c.g.c) => ^BDC = ^CEB ( cặp góc tuong úng )
xét tg BDK và tg CEK có
^DBE = ^ ECD (cmt)
BD = CE
^BDC = ^CEB (cmt)
=> tg BDK = tg CEK ( g.c.g) => BK = CK => tg BKC cân tại K.
a) Xét tam giác ABE và tam giác ADC:
AE=AC(theo gt tam giác ABC cân )
góc A chung
AE=AD(theo gt)
=> Tam giác ABE=tam giác ADC(c.g.c)
nên BE=CD(dpcm)
b) Vì tam giác ABE=tam giác ACD nên góc ABE=góc ACD( 2 góc tương ứng)
c) Xét Tam giác DKB và tam giác EKC
góc DKB=góc EKC(đối đỉnh)
AB=AC(tam giác ABC cân) mà AD=AE (gt) =>DB=EC
góc DBK= góc ECK
=>tam giác DKB=tam giác EKC(g.c.g)
=>KB=KC(2 cạnh tương ứng)
=>tam giác KBC là tam giác cân .
a) Xét \(\Delta\) BAE và \(\Delta\) CAD có:
AB = AC ( \(\Delta\) ABC cân tại A )
BAE = CAD ( chung góc A )
AD = AE ( giả thiết )
.=> \(\Delta\) BAE = \(\Delta\) CAD ( c . g . c ) (1)
=> BE = CD ( 2 cạnh tương ứng )
Vậy BE = CD ( đpcm)
b) Ta có: \(\Delta\) BAE = \(\Delta\) CAD ( chứng minh (1) )
=> ABE = ACD ( 2 góc tương ứng )
Vậy ABE = ACE ( đpcm )
c) Ta có: \(\Delta\) ABC cân tại A ( giả thiết )
=> ABC = ACB ( tính chất tam giác cân )
hay DBC = ECB (2)
Xét \(\Delta\) DBC và \(\Delta\) ECB có:
CD = BE ( chứng minh a)
DBC = ECB ( chứng minh (2) )
BC là cạnh chung
=> \(\Delta\) DBC = \(\Delta\) ECB ( c . g . c )
=> DCB = EBC ( 2 góc tương ứng )
hay KCB = KBC
Xét \(\Delta\) KBC có: KCB = KBC
=> \(\Delta\) KBC cân tại K
Vậy \(\Delta\) KBC cân tại K
Chuk bn hk tốt !
Bạn tự vẽ hình nhé!
a)b) Xét tam giác ABE và ADC có:
AB = AC ( tính chất tam giác ABC cân tại A)
Góc A chung
AD = AE (gt)
=> tam giác ABE = tam giác ACD ( c-g-c)
=> Góc ABE = góc ACD ( 2 góc t/ứ)
c) Ta có góc: ABE + KBC = ABC
ACD + KCB = ACB
mà góc: ACB = ABC (t/c tam giác ABC cân tại A)
ABE = ACD (cmt)
=> Góc KBC = KCB
=> tam giác KBC cân tại K
d) Câu d bạn xem lại xem có sai đề ko nhé!
a.Xét tam giác ABE và tam giác ACD, có:
\(\widehat{A}:chung\)
AD = AE ( gt )
AB = AC ( ABC cân )
Vậy tam giác ABE = tam giác ACD ( c.g.c )
b.Xét tam giác DBC và tam giác ECB, có:
BD = CE ( AB=AC; AD=AE )
góc B = góc C ( ABC cân )
BC: cạnh chung
Vậy tam giác DBC = tam giác ECB ( c.g.c )
=> góc DCB = góc EBC ( 2 góc tương ứng )
=> Tam giác KBC là tam giác cân và cân tại K
c.Xét tam giác AKB và tam giác AKC có:
AB=AC ( ABC cân )
góc ABK = góc ACK ( góc B = góc C; góc KBC = góc KCB )
AK: cạnh chung
Vậy tam giác AKB = tam giác AKC ( c.g.c )
=> góc BAK = góc CAK ( 2 góc tương ứng )
Mà Tam giác ADE cân tại A ( AD=AE )
=> AK là đường cao
=> AK vuông DE (1)
Mà Tam giác KBC cân tại K
=> AK vuông với BC (2)
Từ (1) và (2) => DE//BC
d. Ta có: AK là đường cao ( cmt ) cũng là đường trung tuyến
Mà M là trung điểm BC
=> A,K,M thẳng hàng
a,
Xét Δ ADC và Δ AEB
Ta có : AD = AE (gt)
AC = AB (Δ ABC cân tại A)
\(\widehat{DAC}=\widehat{EAB}\) (góc chung)
=> Δ ADC = Δ AEB (c.g.c)
b, Ta có : Δ ADC = Δ AEB (cmt)
=> \(\widehat{ACD}=\widehat{ABE}\)
a)Xét △ABE và △ACD có
AB = AC ( △ABC cân tại A)
AD = AE (gt)
\(\widehat{A}\) là góc chung
=> △ABE = △ACD (c-g-c)
=> BE = CD ( e cạnh tương ứng)
b) Vì △ABE = △ACD
nên \(\widehat{ABE}=\widehat{ACD}\)
c)
Vì \(\widehat{ABC}=\widehat{ABE}+\stackrel\frown{EBC}\)
\(\text{}\widehat{ACB}=\widehat{ACD}+\widehat{DCB}\)
mà \(\widehat{ABE}=\widehat{ACD}\)
\(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EBC}=\widehat{DCB}\)
=> △KBC là tam giác cân tại K
Tự kẻ hình nha !!!
a)Tam giác ABC cân tại A =>AB=AC;góc B= góc C
D thuộc AB => BD+AD= AB
C thuộc AC =>CE + EA = AC
Mà AB=AC nên AD=EA
Xét tam giác AEB và tam giác ADC:
AD=EA( cmt)
AB=AC(cmt)
góc A: góc chung
=>tam giác AEB = tam giác ADC (c.g.c)
=>BE=CD(2 cạnh tương ứng)
b)theo a) ta có tam giác AEB=tam giác ADC=>góc ABE= góc ACD( 2 góc tương ứng)
c)ta có góc B= góc C và góc ABE = góc ACD
Mà góc ABE + góc EBC = goc B
Góc ACD +góc DCB= góc C =>góc EBC = góc DCB
Tam giác KBC có: góc EBC = góc DCB =>tam giác KBC là tam giác cân tại K
* nhớ k cho mk nhé!!!
hướng dẫn:
a) chứng minh tam giác ABE = tam giác ACD (c.g.c) (1)
** câu này dễ rồi nhé, A^ chung, AB = AC, AD = AE**
=> BE = CD
b) (1) => ABE^ = ACD^
c) Dễ thấy BD = CE
từ đó dễ chứng minh tam giác BDC = tam giác CEB (c.c.c)
=> BCD^ = EBC^ => BCK^ = CBK^ => tam giác KBC cân
a: Xét ΔABE và ΔACDcó
AB=AC
góc BAE chung
AE=AD
=>ΔABE=ΔACD
=>BE=CD
b: ΔABE=ΔACD
=>góc ABE=góc ACD
c: góc ABE+góc KBC=góc ABC
góc ACD+góc KCB=góc ACB
mà góc ABE=góc ACD và góc ABC=góc ACB
nên góc KBC=góc KCB
=>KB=KC
d: AB=AC
KB=KC
=>AK là trung trực của BC
=>A,K,I thẳng hàng