Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(A+B=x^2-2x-y^2+3y-1-2x^2+3y^2-5x+y+3\)
\(=\left(x^2-2x^2\right)-\left(2x+5x\right)+\left(3y^2-y^2\right)+\left(3y+y\right)+\left(3-1\right)\)
\(=2y^2+4y-x^2-7x+2\)
Thay `x = 2` và `y = -1` vào `A + B` ta được:
\(2.\left(-1\right)^2+4.\left(-1\right)-2^2-7.2+2=-18\)
b. \(A-B=x^2-2x-y^2+3y-1-\left(-2x^2+3y^2-5x+y+3\right)\)
\(=x^2-2x-y^2+3y-1+2x^2-3y^2+5x-y-3\)
\(=\left(x^2+2x^2\right)+\left(5x-2x\right)-\left(y^2+3y^2\right)+\left(3y-y\right)-\left(1+3\right)\)
\(=3x^2+3x-4y^2+2y-4\)
Thay `x = -2` và `y = 1` vào `A - B` ta được:
\(3.\left(-2\right)^2+3.\left(-2\right)-4.1^2+2.1^2-4=0\)
a: C=A-B
\(=5x^3+y^3-3x^2y+4xy^2-4x^3+6x^2y-xy^2\)
\(=x^3+3x^2y+3xy^2+y^3\)
D=A+B
\(=5x^3+y^3-3x^2y+4xy^2+4x^3-6x^2y+xy^2\)
\(=9x^3-9x^2y+5xy^2+y^3\)
bậc của C là 3
bậc của D là 3
b: Thay x=0 và y=-2 vào D, ta được:
\(D=9\cdot0^3-9\cdot0^2\left(-2\right)+5\cdot0\cdot\left(-2\right)^2+\left(-2\right)^3\)
\(=0-0+0-8=-8\)
c: Thay x=-1 và y=-1 vào C, ta được:
\(C=\left(-1\right)^3+3\cdot\left(-1\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)\cdot\left(-1\right)^2+\left(-1\right)^3\)
=-8
a) Ta có: \(A=x^6+5+xy-x-2x^2-x^5-xy-2\)
\(=x^6-x^5-2x^2-x+3\)
Bậc là 6
b) Thay x=-1 và y=2018 vào A, ta được:
\(A=\left(-1\right)^6-\left(-1\right)^5-2\cdot\left(-1\right)^2-\left(-1\right)+3\)
\(=1-\left(-1\right)-2\cdot1+1+3\)
\(=1+1-2+1+3\)
=4
a: A=5x^2y-5x^2y-3xy+2xy+xy+x^4y^2+1+x^2
=x^4y^2+x^2+1
Khi x=-1 và y=1 thì A=(-1)^4*1^2+(-1)^2+1=3
b: A=x^2(x^2y^2+1)+1>=1>0 với mọi x,y
=>A luôn dương với mọi x,y