Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)bn c/m hbh có 1 góc vuông là hcn
b) c/m EACH là hbh (EA//HC và EA=HC)
mà N là trung điểm AH nên N cx là trung điểm EC
c)ta có NM là đường trung bình tam giác BHA nên NM=HC/2(1)
mà BH=HC (AH là đc nên cx là đtt trong tam giác cân)
=> BH=BC/2(2)
từ (1) và (2)=>NM=BC/4=12/4=3cm
ta có NM vuông góc AH (NM//BC, AH vuông góc BC)
SAHM=1/2 x 8x3=12 cm2
d)ta có QC=QK,BH=HC
=>QH//BK
lại có KQ=QC,KI=IH
=>QI là đtb t.g KHC
=>QI//HC
mà HC vuoong góc HF
nên QI cx vuông góc HF
tam giác HQF có đường cao QI,HK cùng cắt tại I
nên I là trực tâm
=>IF vuông góc HQ
mà HQ//BK
=>IF vuông góc BK
a) Xét tứ giác AHBK có
D là trung điểm của đường chéo AB(gt)
D là trung điểm của đường chéo KH(K đối xứng với H qua D)
Do đó: AHBK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AHBK có \(\widehat{AHB}=90^0\)(AH⊥BC)
nên AHBK là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Xét ΔABC cân tại A có AH là đường cao ứng với cạnh đáy BC(AH⊥BC)
nên H là trung điểm của BC(Định lí tam giác cân)
⇒\(BH=\dfrac{BC}{2}=\dfrac{16}{2}=8cm\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=8^2+9^2=145\)
\(\Leftrightarrow AB=\sqrt{145}\)(cm)
Xét ΔABH vuông tại H có HD là đường trung tuyến ứng với cạnh AB(D là trung điểm của AB)
nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)
nên \(HD=AD=\dfrac{AB}{2}=\dfrac{\sqrt{145}}{2}cm\)
Nửa chu vi của tam giác ADH là:
\(P_{ADH}=\dfrac{HD+AD+AH}{2}=\dfrac{\left(\dfrac{\sqrt{145}}{2}+\dfrac{\sqrt{145}}{2}+8\right)}{2}=\dfrac{\sqrt{145}+8}{2}cm\)
Diện tích của tam giác ADH là:
\(S_{ADH}=\sqrt{P\cdot\left(P-AD\right)\cdot\left(P-AH\right)\cdot\left(P-DH\right)}\)
\(=\sqrt{\dfrac{\sqrt{145}+8}{2}\cdot\left(\dfrac{\sqrt{145}+8}{2}-\dfrac{\sqrt{145}}{2}\right)\cdot\left(\dfrac{\sqrt{145}+8}{2}-\dfrac{\sqrt{145}}{2}\right)\cdot\left(\dfrac{\sqrt{145}+8}{2}-8\right)}\)
\(=\sqrt{\dfrac{\sqrt{145}+8}{2}\cdot16\cdot\dfrac{\sqrt{145}-8}{2}}\)
\(=\sqrt{\dfrac{145-64}{2}\cdot16}\)
\(=\sqrt{\dfrac{81}{2}\cdot16}=18\sqrt{2}cm^2\)
Bài 3:
a: Xét tứ giác AHBF có
E là trung điểm của AB
E là trung điểm của HF
Do đó: AHBF là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBF là hình chữ nhật