K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2021

Bài 3: 

a: Xét tứ giác AHBF có

E là trung điểm của AB

E là trung điểm của HF

Do đó: AHBF là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBF là hình chữ nhật

a)bn c/m hbh có  1 góc vuông là hcn

b) c/m EACH là hbh (EA//HC và EA=HC)

mà N là trung điểm AH nên N cx là trung điểm EC

c)ta có NM là đường trung bình tam giác BHA nên NM=HC/2(1)

mà BH=HC (AH là đc nên cx là đtt trong tam giác cân)

=> BH=BC/2(2)

từ (1) và (2)=>NM=BC/4=12/4=3cm

ta có NM vuông góc AH (NM//BC, AH vuông góc BC)

SAHM=1/2 x 8x3=12 cm2

d)ta có QC=QK,BH=HC

=>QH//BK

lại có KQ=QC,KI=IH

=>QI là đtb t.g KHC

=>QI//HC

mà HC vuoong góc HF

nên QI cx vuông góc HF

tam giác HQF có đường cao QI,HK cùng cắt tại I

nên I là trực tâm  

=>IF vuông góc HQ

mà HQ//BK 

=>IF vuông góc BK

5 tháng 1 2021
Bạn tham khảo nhé!

Bài tập Tất cả

Bài tập Tất cả

Bài tập Tất cả

17 tháng 12 2019

 nhanh lên các bạn quan trọng là câu 4 help me

21 tháng 12 2020

a) Xét tứ giác AHBK có 

D là trung điểm của đường chéo AB(gt)

D là trung điểm của đường chéo KH(K đối xứng với H qua D)

Do đó: AHBK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AHBK có \(\widehat{AHB}=90^0\)(AH⊥BC)

nên AHBK là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Xét ΔABC cân tại A có AH là đường cao ứng với cạnh đáy BC(AH⊥BC)

nên H là trung điểm của BC(Định lí tam giác cân)

\(BH=\dfrac{BC}{2}=\dfrac{16}{2}=8cm\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được: 

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=8^2+9^2=145\)

\(\Leftrightarrow AB=\sqrt{145}\)(cm)

Xét ΔABH vuông tại H có HD là đường trung tuyến ứng với cạnh AB(D là trung điểm của AB)

nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)

nên \(HD=AD=\dfrac{AB}{2}=\dfrac{\sqrt{145}}{2}cm\)

Nửa chu vi của tam giác ADH là: 

\(P_{ADH}=\dfrac{HD+AD+AH}{2}=\dfrac{\left(\dfrac{\sqrt{145}}{2}+\dfrac{\sqrt{145}}{2}+8\right)}{2}=\dfrac{\sqrt{145}+8}{2}cm\)

Diện tích của tam giác ADH là: 

\(S_{ADH}=\sqrt{P\cdot\left(P-AD\right)\cdot\left(P-AH\right)\cdot\left(P-DH\right)}\)

\(=\sqrt{\dfrac{\sqrt{145}+8}{2}\cdot\left(\dfrac{\sqrt{145}+8}{2}-\dfrac{\sqrt{145}}{2}\right)\cdot\left(\dfrac{\sqrt{145}+8}{2}-\dfrac{\sqrt{145}}{2}\right)\cdot\left(\dfrac{\sqrt{145}+8}{2}-8\right)}\)

\(=\sqrt{\dfrac{\sqrt{145}+8}{2}\cdot16\cdot\dfrac{\sqrt{145}-8}{2}}\)

\(=\sqrt{\dfrac{145-64}{2}\cdot16}\)

\(=\sqrt{\dfrac{81}{2}\cdot16}=18\sqrt{2}cm^2\)