Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác vuông ABM và tam giác vuông NCA có:
NC=AB( gt)
CA=BM ( gt)
=> Tam giác ABM = Tam giác NCA
b) Xét tam giác vuông NCA và tam giác vuông BAC có:
AC chung
NC=BA
=> Tam giác NCA =Tam giác BAC
=> ^NAC =^BCA
mà hai góc trên ở vị trí so le trong
=> NA//BC (1)
c) Xét tam giác vuông ABC và tam giác vuông BMA có:
AB chung
AC=BM
=> Tam giác vuông ABC = Tam giác vuông BMA
=> ^MAB=^ABC
mà hai góc trên ở vị trí so le trong
=> MA//CB (2)
từ (1) , (2) => N, A, M thẳng hàng
Ta lại có: NA=AM ( Tam giác ABM =tam giác NCA)
=> A là trung điểm MN
1. Ta có: \(\widehat{A}+\widehat{ABM}+\widehat{AMB}=\widehat{A}+\widehat{ACN}+\widehat{ANC}=180^0\)(theo định lí tổng 3 góc của tam giác)
\(\Rightarrow\widehat{A}+\widehat{ABM}+90^0=\widehat{A}+\widehat{ACN}+90^0\)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
2. Vì Bx vuông góc với AB
CN vuông góc với AB
\(\Rightarrow\)Bx // CN
hay CH // BD
Vì Cy vuông góc với AC
BM vuông góc với AC
\(\Rightarrow\)BM // Cy
hay BH // Cy
3. Ta có: BH // CD cắt CH // BD
\(\Rightarrow\)BH = CD và CH = BD (theo tính chất đoạn chắn)
* Tính chất đoạn chắn: Nếu 2 đường thẳng song song cắt 2 đường thẳng song song thì chúng bằng nhau
Bài 1:
a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A
=> đường trung tuyến AM đồng thời là đường cao
Vậy AM vuông góc BC
c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)
\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)
d) Ta có KB//AM(vì vuông góc với BM
\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)
Xét tam giác KDB và MDA (2 góc đối đỉnh)
\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)
\(\Rightarrow KD=DM\left(1\right)\)
Tam giác ABM vuông tại M có trung tuyến MD
Nên : MD=BD=AD(2)
Từ (1) và (2) ta có : KD=DM=DB=AD
Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)
Nên : Tam giác KAM vuông tại A
Tương tự : Tam giác MAH vuông tại A
Ta có: Qua1 điểm A thuộc AM có 2 đường KA và AH cùng vuông góc với AM
Nên : K,A,H thẳng thàng
Bài 2 :
a) Ta có tam giác DAB=tam giác CEB(c.g.c)
Do : DA=CB(gt)
BE=BA(gt)
\(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))
=> DA=EC
b) Do tam giác DAB=tam giác CEB(ở câu a)
=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)
Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC)
=> \(\widehat{BCE}+\widehat{BCD}=90^0\)
=> DA vuông góc với EC