Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc AMB=góc AMC=180/2=90 độ
=>AM vuông góc BC
b: Xét ΔIBC và ΔINA có
IB=IN
góc BIC=góc NIA
IC=IA
=>ΔIBC=ΔINA
=>góc IBC=góc INA
=>BC//NA
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét tứ giác ABCN có
I là trung điểm của AC
I là trung điểm của BN
Do đó: ABCN là hình bình hành
Suy ra: AN//BC
a: Xét ΔIBC và ΔINA có
IB=IN
\(\widehat{BIC}=\widehat{NIA}\)
IC=IA
Do đó: ΔIBC=ΔINA
Xét tứ giác ABCN có
I là trung điểm của AC
I là trung điểm của BN
Do đó: ABCN là hình bình hành
Suy ra; AN//BC
a: Xét tứ giác ABCM có
D là trung điểm của AC
D là trung điểm của BM
Do đó: ABCM là hình bình hành
Suy ra: AM//BC và AM=BC
a: Xét ΔAIM và ΔBIC có
IA=IB
\(\widehat{AIM}=\widehat{BIC}\)
IM=IC
Do đó: ΔAIM=ΔBIC
=>\(\widehat{IAM}=\widehat{IBC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AM//BC
ΔIAM=ΔIBC
=>AM=BC
b: Xét ΔEAN và ΔECB có
EA=EC
\(\widehat{AEN}=\widehat{CEB}\)
EN=EB
Do đó: ΔEAN=ΔECB
=>\(\widehat{EAN}=\widehat{ECB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AN//CB
c: ΔEAN=ΔECB
=>AN=CB
AN//CB
AM//CB
AN,AM có điểm chung là A
Do đó: M,A,N thẳng hàng
mà MA=NA
nên A là trung điểm của MN
a: Xét ΔiAB và ΔICD có
IA=IC
góc AIB=góc CID
IB=ID
=>ΔIAB=ΔICD
b: Xét ΔBAC có
BI,AM là trung tuyến
BI cắt AM tại G
=>G là trọng tâm
=>BG=2/3BI=2/3ID
c: Xét ΔDAC có
DI,AN là trung tuyến
DI cắt AN tại K
=>K là trọng tâm
=>DK=2/3DI=2/3*1/2*DB=1/3DB
BG=2/3BI
=>BG=2/3*1/2BD=1/3BD
BG+GK+KD=BD
=>GK=1/3BD=DK=BG
\(a,\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\\ \text{Mà }\widehat{AMB}+\widehat{AMC}=180^0\\ \Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\\ \Rightarrow AM\perp BC\\ b,\left\{{}\begin{matrix}IN=IB\\IA=IC\\\widehat{AIN}=\widehat{BIN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta IBC=\Delta INA\left(c.g.c\right)\\ \Rightarrow\widehat{NAI}=\widehat{ICB}\\ \text{Mà 2 góc này ở vị trí SLT nên }AN\text{//}BC\)
\(c,AH=\dfrac{1}{2}AN=\dfrac{1}{2}BC\left(\Delta IBC=\Delta INA\right)=MC\\ \left\{{}\begin{matrix}AH=MC\\\widehat{HAI}=\widehat{ICM}\\AI=IC\end{matrix}\right.\Rightarrow\Delta IAH=\Delta ICM\left(c.g.c\right)\\ \Rightarrow\widehat{AIH}=\widehat{MIC}\\ \text{Mà 2 góc này ở vị trí đối đỉnh và I,A,C thẳng hàng nên H,I,M thẳng hàng}\)