K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAIB vuông tại A và ΔDIB vuông tại D có 

IB chung

\(\widehat{ABI}=\widehat{DBI}\)

Do đó: ΔAIB=ΔDIB

b: Ta có: ΔAIB=ΔDIB

nên AI=DI; BA=BD

Ta có: IA=ID

nên I nằm trên đường trung trực của AD(1)

Ta có: BA=BD

nên B nằm trên dường trung trực của AD(2)

Từ (1) và (2) suy ra BI⊥AD

c:Xét ΔAIE vuông tại A và ΔDIC vuông tại D có

IA=ID

\(\widehat{AIE}=\widehat{DIC}\)

Do đó: ΔAIE=ΔDIC

Suy ra: AE=DC

Xét ΔBEC có

BA/AE=BD/DC

nên AD//EC

d: Xét ΔIEC có IE=IC

nên ΔIEC cân tại I

21 tháng 4 2022

Tham khảo:

 

 

a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:

AB2=BC2-AC2=102-82=62

=> AB=6 cm.

b/ Xét tam giác ABI và tam giác DBI có:

BI chung

Góc IAB=IDB=90 độ

Góc IBA=IBD(phân giác IB)

=> Tam giác ABI=tam giác DBI(ch-gn)

c/ Gọi O là giao điểm AD và IB.

Vì tam giác ABI=tam giác DBI(câu b)

=> AB=BD(cạnh tương ứng)

Xét tam giác OBA và tam giác OBD có:

BO chung

Góc OBD=OBA(phân giác BI)

AB=BD(cmt)

=> Tam giác OBA=tam giác OBD(c-g-c)

=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ

=> BI là đường trung trực của AD.

d/ Xét tam giác IAE và tam giác IDC có:

Góc AIE=DIC(đối đỉnh)

Góc IAE=IDC=90 độ

IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)

=> Tam giác IAE=tam giác IDC(g-c-g)

=> AE=DC(cạnh tương ứng)

Mà AB=BD

=> BE=BC hay Tam giác BEC cân tại B

=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC

Mà BI vuông góc với AD nên BI cũng vuông góc với EC.

Gọi N là giao điểm của BI và EC.

9 tháng 5 2022

tôi ko biết

15 tháng 5 2016

A C B I D E

15 tháng 5 2016

a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:

AB2=BC2-AC2=102-82=62

=> AB=6 cm.

b/ Xét tam giác ABI và tam giác DBI có:

BI chung

Góc IAB=IDB=90 độ

Góc IBA=IBD(phân giác IB)

=> Tam giác ABI=tam giác DBI(ch-gn)

c/ Gọi O là giao điểm AD và IB.

Vì tam giác ABI=tam giác DBI(câu b)

=> AB=BD(cạnh tương ứng)

Xét tam giác OBA và tam giác OBD có:

BO chung

Góc OBD=OBA(phân giác BI)

AB=BD(cmt)

=> Tam giác OBA=tam giác OBD(c-g-c)

=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ

=> BI là đường trung trực của AD.

d/ Xét tam giác IAE và tam giác IDC có:

Góc AIE=DIC(đối đỉnh)

Góc IAE=IDC=90 độ

IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)

=> Tam giác IAE=tam giác IDC(g-c-g)

=> AE=DC(cạnh tương ứng)

Mà AB=BD

=> BE=BC hay Tam giác BEC cân tại B

=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC

Mà BI vuông góc với AD nên BI cũng vuông góc với EC.

Gọi N là giao điểm của BI và EC.

15 tháng 5 2016

tam giác ABC , góc A = 90 độ

=> AB+ AC= BC( định lí Pi-ta-go)

=> AB= 102  - 82  = 36

=> AB = 6

xét tam giác AIB và tam giác DIB có:

góc A = góc D (= 90 độ)

góc ABI = góc DBI ( BI là phan giác )

=> tam giác ABI = tam giác DBI ( cạnh huyền - góc nhọn) (*)

gọi Bi giao AD = N

(*) => BA =BD (1)

tam giác BAN = tam giác BDN ( c.g.c)

=> góc BNA = góc BND ; AN = ND => BI là trung trực

(*)=> AI = ID => tam giác AID cân tại I => góc DAI = góc ADI

Tam giác ADE = tam giác ADC ( g.c.g) => AE =  DC (2)

từ (1) và (2) => BE = BC 

BI giao EC = M

tam giác BEM = tam Giác BCM (c.g.c) => góc BME = góc BMC

=> BI vuông góc EC.

b: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có 

BI chung

\(\widehat{ABI}=\widehat{DBI}\)

Do đó: ΔBAI=ΔBDI

Suy ra: BA=BD và IA=ID

Ta có: BA=BD

nên B nằm trên đường trung trực của AD\(\left(1\right)\)

Ta có: IA=ID

nên I nằm trên đường trung trực của AD\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BI là đường trung trực của AD

Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường phân giác BI. Kẻ IH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và IH.a)     Tính BC?b)    Chứng minh tam giác ABI=tam giác HBIc)     Chứng minh BI là đường trung trực của đoạn thẳng AHd)    Chứng minh IA<ICe)     Chứng minh I là trực tâm tam giác ABCBài 2: Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường phân giác BI. Kẻ IH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và IH.

a)     Tính BC?

b)    Chứng minh tam giác ABI=tam giác HBI

c)     Chứng minh BI là đường trung trực của đoạn thẳng AH

d)    Chứng minh IA<IC

e)     Chứng minh I là trực tâm tam giác ABC

Bài 2: Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường thẳng vuông góc với BC, cắt AC tại E.

a)     Cho AB=5cm, AC=7cm, tính BC?

b)    Chứng minh tam giác ABE=tam giác DBE?

c)     Gọi F là giao điểm của DE và BA, chứng minh EF=EC

d)    Chứng minh BE là trung trực của đoạn thẳng AD

Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Chứng minh tam giác ABK cân tại B

b)    Chứng minh DK vuông góc BC

c)     Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HAC

d)    Gọi I là giao điểm của AH và BD. Chứng minh IK//AC

Bài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).

a)     So sánh góc ABC và góc ACB. Tính góc ABH.

b)    Vẽ AD là phân giác của góc A (D thuộc BC), vẽ BI vuông góc AD tại I. Chứng minh tam giác AIB=tam giác BHA

c)     Tia BI cắt AC ở E. Chứng minh tam giác ABE đều

Bài 5: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Biết AC =8cm, AB=6cm. Tính BC?

b)    Tam giác ABK là tam giác gì?

c)     Chứng minh DK vuông góc BC

d)    Kẻ AH vuông góc BC. Chứng minh Ak là tia phân giác của góc HAC.

Bài 6: Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm

a)     Tam giác ABC là tam giác gì

b)    Vẽ BD là phân giác góc B. Trên cạnh BC lấy điểm E sao cho AB=AE. Chứng minh AD=DE

c)     Chứng minh AE vuông góc BD

d)    Kéo dài BA cắt ED tại F. Chứng minh AE//FC

Bài 7: Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H.

a)     Chứng minh tam giác ABH=tam giácACH

b)    Vẽ trung tuyến BM.Gọi G là giao điểm của AH và BM. Chứng minh G là trọng tâm của tam giac ABC

c)     Cho AB=30cm, BH=18cm.Tính AH ,AG

d)    Từ H kẻ HD // với AC (D thuộc AB) .Chứng minh ba điểm C,G,D thẳng hàng .

Bài 8: Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm

a)Tính BC

b) Gọi M là trung điểm của BC. Kẻ BH vuông góc AM tại H, CK vuông góc AM tại K. Chứng minh tam giác BHM=tam giac CKM

c)Kẻ HI vuông góc BC tại I .So sánh HI và MK

d) So sánh BH+ BK với BC

2
23 tháng 4 2016

đăng gì mà lắm thế nhõ ko ai trả lời thì sao

25 tháng 4 2016

GIÚP TỚ

Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường phân giác BI. Kẻ IH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và IH.a)     Tính BC?b)    Chứng minh tam giác ABI=tam giác HBIc)     Chứng minh BI là đường trung trực của đoạn thẳng AHd)    Chứng minh IA<ICe)     Chứng minh I là trực tâm tam giác ABCBài 2: Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường phân giác BI. Kẻ IH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và IH.

a)     Tính BC?

b)    Chứng minh tam giác ABI=tam giác HBI

c)     Chứng minh BI là đường trung trực của đoạn thẳng AH

d)    Chứng minh IA<IC

e)     Chứng minh I là trực tâm tam giác ABC

Bài 2: Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường thẳng vuông góc với BC, cắt AC tại E.

a)     Cho AB=5cm, AC=7cm, tính BC?

b)    Chứng minh tam giác ABE=tam giác DBE?

c)     Gọi F là giao điểm của DE và BA, chứng minh EF=EC

d)    Chứng minh BE là trung trực của đoạn thẳng AD

Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Chứng minh tam giác ABK cân tại B

b)    Chứng minh DK vuông góc BC

c)     Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HAC

d)    Gọi I là giao điểm của AH và BD. Chứng minh IK//AC

Bài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).

a)     So sánh góc ABC và góc ACB. Tính góc ABH.

b)    Vẽ AD là phân giác của góc A (D thuộc BC), vẽ BI vuông góc AD tại I. Chứng minh tam giác AIB=tam giác BHA

c)     Tia BI cắt AC ở E. Chứng minh tam giác ABE đều

Bài 5: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Biết AC =8cm, AB=6cm. Tính BC?

b)    Tam giác ABK là tam giác gì?

c)     Chứng minh DK vuông góc BC

d)    Kẻ AH vuông góc BC. Chứng minh Ak là tia phân giác của góc HAC.

Bài 6: Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm

a)     Tam giác ABC là tam giác gì

b)    Vẽ BD là phân giác góc B. Trên cạnh BC lấy điểm E sao cho AB=AE. Chứng minh AD=DE

c)     Chứng minh AE vuông góc BD

d)    Kéo dài BA cắt ED tại F. Chứng minh AE//FC

Bài 7: Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H.

a)     Chứng minh tam giác ABH=tam giácACH

b)    Vẽ trung tuyến BM.Gọi G là giao điểm của AH và BM. Chứng minh G là trọng tâm của tam giac ABC

c)     Cho AB=30cm, BH=18cm.Tính AH ,AG

d)    Từ H kẻ HD // với AC (D thuộc AB) .Chứng minh ba điểm C,G,D thẳng hàng .

Bài 8: Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm

a)Tính BC

b) Gọi M là trung điểm của BC. Kẻ BH vuông góc AM tại H, CK vuông góc AM tại K. Chứng minh tam giác BHM=tam giac CKM

c)Kẻ HI vuông góc BC tại I .So sánh HI và MK

d) So sánh BH+ BK với BC

5
1 tháng 5 2019

C1 : 

a) Xét tam giác ABC có BC2=AB2+AC2( Định lý Py-ta-go)

                                  Thay số:BC2=62+82

                                                BC2=36+64=100

                                              =>BC=10(cm)

b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2

Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có:

                             Bi chung, góc ABI= góc HBI ( cmt)

=> tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn)

c)Gọi giao của AH và BI là K 

Vì tam giác ABI=tam giác HBI (cmt)=> AB=HB( 2 cạnh tương ứng)

Xét tam giác AKB và tam giác HKB có:

AB=HB (cmt)

góc ABK=góc HBK(cmt)

BK chung

=. tam giác AKB= tam giác HKB ( c.g.c)

=> KB=KH ( 2 cạnh tương ứng)

=> K là trung điểm của BH (1)

Vì AB=HB (cmt) => tam giác ABH cân tại B=> AH là đường cao của tam giác ABH=> AH vuông góc với BK  hay AH vuông góc với BI(2)

Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AH

                            


 
1 tháng 5 2019

C2 : 

a)ÁP DỤNG ĐỊNH LÝ PYTAGO THUẬN TRÒG TAM GIÁC ABC (BAC = 90 ĐỘ ) CÓ :

AB+AC2=BC2

=>52+72=BC2

=>BC2=25+49=74

HAY BC = CĂN BẬC HAI 74 =8.6 (CM)

b)XÉT HAI TAM GIÁC ABE (BAE = 90 ĐỘ ) VÀ TAM GIÁC DBE (BDE=90 ĐỘ ) CÓ :

AB=BD (GT)

BE LÀ CẠNH HUYỀN CHUNG

=>TAM GIÁC ABE = TAM GIÁC DBE (CẠNH HUYỀN _CẠNH GÓC VUÔNG )

C ) DO TAM GIÁC ABE = TAM GIÁC DBE (CÂU B ) 

=>AE=DE (2 CẠNH TƯƠNG ỨNG )

XÉT HAI TAM GIÁC AEF (EAF = 90 ĐỘ ) VÀ TAM GIÁC DEC (EDC = 90 ĐỘ ) CÓ :

E1 =E2

AE=DE (CMT)

=>TAM GIÁC AEF=TAM GIÁC DEC (CGV _ GÓC NHỌN KỀ )

=>ÈF=EC (2 CẠNH TƯƠNG ỨNG)


 

1: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có

BI chung

\(\widehat{ABI}=\widehat{DBI}\)

Do đó: ΔBAI=ΔBDI

Suy ra:BA=BD

2: Xét ΔAIE vuông tại A và ΔDIC vuông tại D có

IA=ID

\(\widehat{AIE}=\widehat{DIC}\)

Do đó: ΔAIE=ΔDIC

Suy ra: AE=DC
Ta có: BA+AE=BE

BD+DC=BC

mà BA=BD

và AE=DC

nên BE=BC

hay ΔBEC cân tại B

3: Xét ΔBEC có BA/AE=BD/DC

nên AD//EC

28 tháng 4

Hình đâu 

a: Xét ΔADB và ΔADC có

AB=AC
góc BAD=góc CAD

AD chung

=>ΔADB=ΔADC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD
=>AE=AF và DE=DF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC