K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔANH

Suy ra: AM=AN và HM=HN

=>AH là đường trung trực của MN

18 tháng 4

Bài 5:

a) Chứng minh ∆AHB = ∆AHC và AH là tia phân giác của góc BAC.

Vì ∆ABC cân tại A nên:

  • AB = AC (1)
  • Góc ABC = góc ACB (2)

Xét ∆AHB và ∆AHC có:

  • Cạnh AH chung
  • AB = AC (từ (1))
  • Góc AHB = góc AHC (từ (2) và AH ⊥ BC)

Vậy ∆AHB = ∆AHC (c.g.c)

Suy ra:

  • HB = HC
  • Góc BAH = góc CAH

Do đó, AH là tia phân giác của góc BAC.

b) Chứng minh AH vuông góc với MN

Xét ∆AHM và ∆AHN có:

  • AH chung
  • Góc AHM = góc AHN (= 90 độ)
  • AM = AN (vì AH là tia phân giác của góc BAC)

Vậy ∆AHM = ∆AHN (cạnh huyền - góc nhọn)

Suy ra: HM = HN

Do đó, AH là đường trung trực của MN.

Vậy AH vuông góc với MN.

c) Chứng minh P, Q, K thẳng hàng

Vì H là trung điểm của MP nên HP = HM.

Xét ∆HMP và ∆HNP có:

  • HP = HN (cmt)
  • MH = NH (cmt)
  • NP chung

Vậy ∆HMP = ∆HNP (c.c.c)

Suy ra: góc MHP = góc NHP = 90 độ.

Do đó, PQ ⊥ MH và PQ ⊥ NH.

Mà AH ⊥ MN nên PQ // AH (1)

Ta lại có: K ∈ MN và AH ⊥ MN nên K ∈ PQ (2)

Từ (1) và (2) suy ra: PQ đi qua điểm K.

Vậy P, Q, K thẳng hàng.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

=>ΔAHB=ΔAHC

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>AM=AN và MH=MN

=>AH là trung trực của MN

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

DO đó; ΔAMH=ΔANH

Suy ra: AM=AN và HM=HN

=>AH là đường trung trực của MN

hay AH\(\perp\)MN

4 tháng 5

c, Xét ▲AMK và ▲ANK có:                

Góc K1 = K2 ( Ah vuông với Mn)

Ak chung

A1=A2 (cmt)

Sra ▲AMK = ▲ANK ( cgv-gn)

Do đó MK = NK ( 2 cạnh tương ứng)

Xét ▲NMP có: 

NH là trung tuyến (do HM=HP)

PK là trung tuyến ( do MK = NK) cmt (1)

Suy ra Q là trọng tâm △NMP (2)

Từ (1) và (2) suy ra P,Q,K thẳng hàng

a: Xét ΔAHC vuông tại H và ΔAHB vuông tại H có

AB=AC

AH chung

Do đó: ΔAHC=ΔAHB

Suy ra: \(\widehat{AHC}=\widehat{AHB}\)

b: Xét tứ giác BNCM có 

H là trung điểm của BC

H là trung điểm của NM

Do đó: BNCM là hình bình hành

Suy ra: BN//CM

hay BN//AC

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

21 tháng 2 2020

a, xét tam giác AHC và tam giác AHC có: AH chung

AB = AC do tam giác ABC cân tại A (gt)

góc AHB = góc AHC = 90 

=> tam giác AHC = tam giác AHC (ch-cgv)

b,  tam giác AHC = tam giác AHC (câu a)

=> CH = BH (đn)

xét tma giác BHN và tam giác CHM có: góc MHC = góc NHB (đối đỉnh)

HN = HM (gt)

=> tam giác BHN = tam giác CHM (c-g-c)

=> góc BNH = góc HMC (đn) mà 2 góc này slt

=> BN // AC (đl)