Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)
\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)
\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x
3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2
Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)
Tương tự ta có b^2-a^2=n
Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn
Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1
Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)
Từ (1) và (2)=> n chia hết cho 40
a/ \(P=\frac{\left(x^2+a\right)\left(1+a\right)a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
\(=\frac{\left(a^2+a+1\right)\left(x^2+1\right)}{\left(a^2-a+1\right)\left(x^2+1\right)}=\frac{a^2+a+1}{a^2-a+1}\)
b/ Từ phân số rút gọn thì ta thấy P không phụ thuộc vào x và có nghĩa với mọi x.
Ta lại có \(a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy P không phụ thuộc vào x và có nghĩa với mọi x và a
Tử của P: \(T=x^2\left(1+a\right)+a\left(1+a\right)+a^2x^2+1=\left(1+a+a^2\right)x^2+\left(a^2+a+1\right)\)
\(T=\left(a^2+a+1\right)\left(x^2+1\right)\)
Mẫu của P:
\(M=x^2\left(1-a\right)-a\left(1-a\right)+a^2x^2+1=\left(1-a+a^2\right)x^2+\left(a^2-a+1\right)\)
\(M=\left(a^2-a+1\right)\left(x^2+1\right)\)
Ta có: \(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow\left(x^2+1\right)\ne0\forall x\)
a)\(P=\frac{T}{M}=\frac{\left(a^2+a+1\right)\left(x^2+1\right)}{\left(a^2-a+1\right)\left(x^2+1\right)}=\frac{\left(a^2+a+1\right)}{\left(a^2-a+1\right)}\)
b) từ (a) giá trị của P không con x trong biểu thức => P không phụ thuộc x--> dpcm
Bài 2:
a: \(\Leftrightarrow x^2+3x-x^2-11=0\)
=>3x-11=0
=>x=11/3
b: \(\Leftrightarrow x^3+8-x^3-2x=0\)
=>8-2x=0
=>x=4
Bài 3:
a: Sửa đề: \(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)
\(=2x\cdot2y=4xy\)
b: \(=\left(7n-2-2n+7\right)\left(7n-2+2n-7\right)\)
\(=\left(9n-9\right)\left(5n+5\right)=9\left(n-1\right)\left(5n+5\right)⋮9\)
a) \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\) (ĐKXĐ: \(x\ne\pm1\) )
\(=\left(\frac{x+1+2\left(1-x\right)-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\frac{2}{x^2-1}.\frac{x^2-1}{1-2x}=\frac{2}{1-2x}\)
b) Để x nhận giá trị nguyên <=> 2 chia hết cho 1 - 2x
<=> 1-2x thuộc Ư(2) = {1;2;-1;-2}
Nếu 1-2x = 1 thì 2x = 0 => x= 0
Nếu 1-2x = 2 thì 2x = -1 => x = -1/2
Nếu 1-2x = -1 thì 2x = 2 => x =1
Nếu 1-2x = -2 thì 2x = 3 => x = 3/2
Vậy ....
A = 5(x + 3)(x - 3) + (2x + 3)3 + (x - 6)2
A = 5(x + 3)(x - 3) + 4x2 + 12x + 9 + x2 - 12x + 36
A = 5x2 - 45x + 4x2 + 12x + 9 + x2 - 12x + 36
A = 10x2 (1)
Thay x = -1/5 vào (1), ta có:
A = 10x2 = 10.(-1/5)2 = 2/5
A = 2/5
Vậy:...
Cho mình sửa lại câu b nha!
\(\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
a/\(n^3+17n=n^3-n+18n=n\left(n-1\right)\left(n+1\right)+18n\)
Có n(n-1)(n+1) vừa chia hết cho 2,3 nên chia hết cho 6 (2,3 nguyên tố cùng nhau)
Và 18n chia hết 6
Nên có ĐPCM