K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

1 tháng 12 2018

28 tháng 11 2023

a)ta có:

AB=DC mà AE=1/2 AB, KC= 1/2 DC

=>AE=KC

Xét tứ giác AECK, ta có: 

AE//KC(AB//KC và AE thuộc AB và KC thuộc DC)

=>tứ giác AECK là hình bình hành.

b) chỗ DE vuông góc CE có đúng không vậy để mai mình làm tiếp

29 tháng 11 2023

DF VUÔNG GÓC CE, DF vuông góc AK

15 tháng 3 2020

ABCDFGEKI

a,  có : ^FAD + ^DAE = 90

^BAE + ^DAE = 90

=> ^FAD = ^BAE 

xét tam giác FDA và tam giác EBA có : AB = AD do ABCD là hình vuông (gt)

^FDA = ^EBA = 90

=> tam giác FDA = tam giác EBA (cgv-gnk)

=> AF = AB (Đn)

=> tam giác AFB cân tại A (đn)

có AI là trung tuyến

=> AI _|_ EF                (1)

xét tam giác GIE và tam giác KIF có : ^GIE = ^KIF (đối đỉnh)

FI = IE do I là trung điểm của EF (gt)

EG // FK (gT) => ^GEI = ^IFK (slt)

=> tam giác GIE = tam giác KIF (g-c-g)

=> EG = FK (đn)

mà EG // FK (gt)

=> EGFK là hình bình hành (dh) và (1)

=> EGFK là hình thoi (dh)

b, kẻ AC

AC là pg của ^BAC do ABCD là hình vuông (gt) => ^DAK + ^KAC = 45     

tam giác  AFE vuông cân (tự cm) => ^IAE = 45 => ^KAC + ^CAE = 45

=> ^DAK = ^CAE 

tam giác ADK vuông tại D => ^AKD = 90 - ^DAK (đl)

^FAC = 90 - ^CAE

=> ^AKD = ^FAC

Xét tam giác AFK và tam giác AFC có : ^AFC chung

=> tam giác AFK đồng dạng với tam giác AFC (g-g)

=> AF/FC = FK/AF

=> AF^2 = KF.KC

c, có BD và AC là đường chéo của hình vuông ABCD 

=> B;D thuộc đường trung trực của AC (2)

xét tam giác AFE vuông tại A có I là trung điểm của EF (gt) => AI = EF/2 (đl)

xét tam giác FEC vuông tại C có I là trung điểm của EF (gt) => CI = EF/2

=> AI = IC 

=> I thuộc đường trung trực của AC và (2)

=> B;I;D thẳng hàng 

d, Có EK = FK do EGFK là hình thoi (câu a)

FK = FD + DK

FD = BE do tam giác ABE = tam giác ADF (Câu a)

=> EK = BE + DK

có chu vi ECK = EC + KC + EK

=> chu vi ECK = EC + KC + BE + DK

= BC + DC

= 2BC 

mà BC = 6

=> Chu vi ECK = 12

20 tháng 5 2019

a) xét tam giác CIF và tam giác CBE:

\(\widehat{CBE}\) = \(\widehat{CIF}\)(= 90o)

\(\widehat{BCE}\) chung

=) \(\Delta\)CIF ~ \(\Delta\)CBE(g.g)

b) có AB // CD( t/c hình vuông)

=) BE// CD( E\(\in\)AB)

(=) \(\widehat{BEC}\)= \(\widehat{ECD}\)( so le trong) (1)

\(\Delta\)CIF~ \(\Delta\)CBE( cmt)

(=) \(\widehat{BEC=}\widehat{IFC}\)( góc t/ứ) (2)

tử (1) và(2) =) \(\widehat{ECD=}\widehat{IFC}\)

mà : \(\widehat{CIF=}\widehat{CID}\)( = 900)

=) \(\Delta IFC=\Delta ICD\)( g.g)

(=) \(\frac{IF}{IC}=\frac{IC}{ID}\)( cạnh t/ứ)

=) IC.IC= IF.ID

=) IC2= IF.ID

HÌNH BẠN TỰ VẼ NHA@leuleu