Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vẽ đồ thị:
b) - Từ hình vẽ ta có: yA = yB = 4 suy ra:.
+ Hoành độ của A: 4 = 2.xA => xA = 2 (*)
+ Hoành độ của B: 4 = xB => xB = 4
=> Tọa độ 2 điểm là: A(2, 4); B(4, 4)
- Tìm độ dài các cạnh của ΔOAB
((*): muốn tìm tung độ hay hoành độ của một điểm khi đã biết trước hoành độ hay tung độ, ta thay chúng vào phương trình đồ thị hàm số để tìm đơn vị còn lại.)
\(b,\text{PT giao Ox của }\left(d_2\right):y=0\Leftrightarrow-x+3=0\Leftrightarrow x=3\Leftrightarrow B\left(3;0\right)\Leftrightarrow OB=3\\ \text{PTHĐGĐ }\left(d_1\right)\text{ và }\left(d_2\right):2x=-x+3\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow A\left(1;2\right)\\ \text{Gọi }H\text{ là đường cao từ }A\text{ của }\Delta OAB\\ \Rightarrow AH=\left|y_A\right|=2\\ \Rightarrow S_{OAB}=\dfrac{1}{2}AH\cdot OB=\dfrac{1}{2}\cdot2\cdot3=3\left(đvdt\right)\)
- Từ hình vẽ ta có: yA = yB = 4 suy ra:.
+ Hoành độ của A: 4 = 2.xA => xA = 2 (*)
+ Hoành độ của B: 4 = xB => xB = 4
=> Tọa độ 2 điểm là: A(2, 4); B(4, 4)
- Tìm độ dài các cạnh của ΔOAB
((*): muốn tìm tung độ hay hoành độ của một điểm khi đã biết trước hoành độ hay tung độ, ta thay chúng vào phương trình đồ thị hàm số để tìm đơn vị còn lại.)
a) Xem hình trên
b) A(2; 4), B(4; 4).
Tính chu vi ∆OAB.
Dễ thấy AB = 4 - 2 = 2 (cm).
Áp dụng định lý Py-ta-go, ta có:
OA = = 2√5 (cm), OB = = 4√2 (cm).
Tính diện tích ∆OAB.
Gọi C là điểm biểu diễn số 4 trên trục tung, ta có:
= - = OC . OB - OC . AC.
= . 42 - . 4 . 2 = 8 - 4 = 4 (cm2).
Đường thẳng // với Ox và cắt Oy tại tung độ là 6 có phương trình: y = 6
Tọa độ A là nghiệm của hệ
\(\hept{\begin{cases}y=x\\y=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=6\end{cases}}\)
=> A(6, 6)
Tọa độ B là nghiệm của hệ
\(\hept{\begin{cases}y=3x\\y=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}\)
=> B(2, 6)
a) Vẽ đường thẳng qua O(0; 0) và điểm M(1; 1) được đồ thị hàm số y = x.
Vẽ đường thẳng qua B(0; 2) và A(-2; -2) được đồ thị hàm số y = 2x + 2.
b) Hoành độ giao điểm của 2 đồ thị hàm số là nghiệm của phương trình:
2x + 2 = x
=> x = -2 => y = -2
Suy ra tọa độ giao điểm là A(-2; -2).
c) Qua B(0; 2) vẽ đường thẳng song song với Ox, đường thẳng này có phương trình y = 2 và cắt đường thẳng y = x tại C.
- Tọa độ điểm C:
Hoành độ giao điểm của 2 đồ thị hàm số là nghiệm của phương trình:
x = 2 => y = 2 => tọa độ C(2; 2)
- Tính diện tích tam giác ABC: (với BC là đáy, AE là chiều cao tương ứng với đáy BC)
a)
+) y = 2x + 2
Cho x = 0 => y = 2
=> ( 0 ; 2 )
y = 0 => x = -1
=> ( -1 ; 0 )
- Đồ thị hàm số y = x đi qua 2 điểm có tọa độ ( 0 ; 0 )
- Đồ thị hàm số y = 2x + 2 đi qua 2 điểm có tọa độ ( 0 ; 2 ) và ( -1 ; 0 )
b) Hoành độ điểm A là nghiệm của PT sau :
x = 2x + 2
<=> 2x - x = -2
<=> x = -2
=> y = -2
Vậy A ( -2 ; -2 )
c) Tung độ điểm C = 2 => hoành độ điểm C là x = 2
=> C ( 2 ; 2 )
Từ A hạ \(AH\perp BC\), ta có : AH = 4cm
BC = 2cm
Vậy : ..............
\(\Rightarrow S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.4.2=4\left(cm^2\right)\)
2: Tọa độ điểm A là:
\(\left\{{}\begin{matrix}y_A=0\\-x_A+1=0\end{matrix}\right.\Leftrightarrow A\left(1;0\right)\)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}x_B=0\\y_B=-0+1=1\end{matrix}\right.\)
Vậy: B(0;1)
\(S_{OAB}=\dfrac{OA\cdot OB}{2}=\dfrac{1}{2}\)
3: Vì (d')//(d) nên a=-1
Vậy: (d'): y=-x+b
Thay x=0 và y=-2 vào (d'), ta được:
b-0=-2
hay b=-2
a) Xem hình trên và vẽ lại
b)
+) Ta coi mỗi ô vuông trên hình 55 là một hình vuông có cạnh là 1cm1cm.
Từ hình vẽ ta xác định được: A(2;4), B(4;4)A(2;4), B(4;4).
+) Tính độ dài các cạnh của ΔOAB∆OAB:
Dễ thấy AB=4−2=2AB=4−2=2 (cm)(cm).
Gọi CC là điểm biểu diễn số 44 trên trục tung, ta có OC=4cm,AC=2cm;BC=4cmOC=4cm,AC=2cm;BC=4cm
Áp dụng định lý Py-ta-go cho các tam giác vuông OACOAC và OBCOBC, ta có:
OA=√AC2+OC2=√22+42=2√5(cm)OB=√BC2+OC2=√42+42=4√2(cm)OA=AC2+OC2=22+42=25(cm)OB=BC2+OC2=42+42=42(cm)
⇒⇒ Chu vi ΔOABΔOAB là:
CΔOAB=OA+OB+ABCΔOAB=OA+OB+AB
=2+2√5+4√2≈12,13(cm)=2+25+42≈12,13(cm)
+) Tính diện tích ΔOAB∆OAB:
Cách 1:
SΔOAB=SΔOBC−SΔOAC=1/2OC.BC−1/2OC.AC=1/2.42−1/2.4.2=8−4=4(cm2)SΔOAB=SΔOBC−SΔOAC=1/2OC.BC−1/2OC.AC=1/2.42−1/2.4.2=8−4=4(cm2)
Cách 2:
ΔOAB có đường cao ứng với cạnh AB là OC.
⇒SΔOAB=1/2.OC.AB=1/2.4.2=4⇒S∆OAB=1/2.OC.AB=1/2.4.2=4 (cm2)
a,
b,
Từ hình vẽ ta có: yA = yB = 4 suy ra:.
+ Hoành độ của A: 4 = 2.xA => xA = 2 (*)
+ Hoành độ của B: 4 = xB => xB = 4
=> Tọa độ 2 điểm là: A(2, 4); B(4, 4)
- Tìm độ dài các cạnh của ΔOAB
- Tìm độ dài các cạnh của ΔOAB