K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

=>ΔAFH đồng dạng ΔADB

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

góc FEH=góc BAD

góc DEH=góc FCB

mà góc BAD=góc FCB

nên góc FEH=góc DEH

=>EH là phân giác của góc FED

1: Xét ΔABC có BE,CF là các đường cao

BE cắt CF tại H

=>H là trực tâm

=>AH vuông góc BC

Xét tứ giác BHCD có

BH//CD

BD//CH

=>BHCD là hình bình hành

2: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

=>M là trung điểm của HD

Xét ΔDAH có

M,O lần lượt là trung điểm của DH,DA

nên MO là đường trung bình

=>AH=2MO

29 tháng 1 2023

Came ơn b nha :))

 

13 tháng 10 2023

D ở đây ra vậy em?

13 tháng 10 2023

Sửa đề: Từ C,B kẻ các đường thẳng vuông góc với AC,AB cắt nhau tại K

a: CK vuông góc AC

BH vuông góc AC

Do đó: CK//BH

BK vuông góc AB

CH vuông góc AB

Do đó: BK//CH

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

=>H,M,K thẳng hàng

 

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

10 tháng 7 2021

bạn có thể làm giúp mình câu c,d đc ko?

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

hay \(AF\cdot AB=AE\cdot AC\)

b: Ta có: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC

3 tháng 9 2021

da

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

hay \(AF\cdot AB=AE\cdot AC\)

b: Ta có: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔABC