K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

a,

\(\dfrac{89}{-13}< 0< \dfrac{1}{123}\\ \Rightarrow\dfrac{89}{-13}< \dfrac{1}{123}\)

Vậy \(\dfrac{89}{-13}< \dfrac{1}{123}\)

b,

\(\dfrac{-13}{15}>\dfrac{-15}{15}=-1=\dfrac{-30}{30}>\dfrac{-31}{30}\)

Vậy \(\dfrac{-13}{15}>\dfrac{-31}{30}\)

c,

\(\dfrac{125}{123}=\dfrac{123}{123}+\dfrac{2}{123}=1+\dfrac{2}{123}\\ \dfrac{99}{97}=\dfrac{97}{97}+\dfrac{2}{97}=1+\dfrac{2}{97}\)

\(\dfrac{2}{97}>\dfrac{2}{123}\Rightarrow1+\dfrac{2}{97}>1+\dfrac{2}{123}\Leftrightarrow\dfrac{99}{97}>\dfrac{125}{123}\)

Vậy \(\dfrac{99}{97}>\dfrac{125}{123}\)

d,

\(\dfrac{125}{126}< \dfrac{126}{126}=1=\dfrac{986}{986}< \dfrac{987}{986}\)

Vậy \(\dfrac{125}{126}< \dfrac{987}{986}\)

19 tháng 7 2023

 

Cô làm rồi em nhé:

https://olm.vn/cau-hoi/giup-em-voiii.8161766187032

29 tháng 10 2021

a: \(16=2^4\)

nên \(-\dfrac{5}{16}\) viết được dưới dạng số thập phân hữu hạn

\(-\dfrac{5}{16}=-0.3125\)

22 tháng 7 2017

gianroi

6 tháng 11

 a;\(\dfrac{17}{24}\)  < \(\dfrac{17}{34}\) ⇒ \(\dfrac{-17}{24}\) > \(\dfrac{-17}{34}\) = - \(\dfrac{1}{2}\)

  \(\dfrac{25}{31}\)  > \(\dfrac{25}{50}\) ⇒ - \(\dfrac{25}{31}\)  < \(\dfrac{-25}{50}\) = - \(\dfrac{1}{2}\) 

    Vậy - \(\dfrac{17}{34}\) > - \(\dfrac{25}{31}\) 

6 tháng 11

b;  \(\dfrac{27}{38}\) > \(\dfrac{27}{39}\) > \(\dfrac{25}{39}\) 

⇒ - \(\dfrac{27}{38}\) < - \(\dfrac{25}{39}\)  = \(\dfrac{-125}{195}\) 

Vậy - \(\dfrac{27}{38}\) < - \(\dfrac{125}{195}\)

 

29 tháng 10 2021

a: 12 khi phân tích thành nhân tử, có thừa số 3 là thừa số khác 2 và 5 ở trong nên 7/12 viết được dưới dạng số thập phân vô hạn tuần hoàn

a: \(\dfrac{-13}{40}< \dfrac{-12}{40}\)

\(\dfrac{-5}{6}>\dfrac{-91}{104}\)

17 tháng 7 2023

Sao bn giống BT mình thế ?:)

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:
\((a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c})=\frac{a}{a+b}+\frac{a}{b+c}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+\frac{c}{b+c}+\frac{c}{a+c}\)

$\Leftrightarrow 2018.\frac{1}{2018}=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$

$\Leftrightarrow 1=1+1+1+S$

$S=1-1-1-1=-2$

1 tháng 8 2017

a) \(\dfrac{12}{47}\)\(\dfrac{11}{53}\)

Ta có: \(\dfrac{11}{47}>\dfrac{11}{53}\)\(\dfrac{12}{47}>\dfrac{11}{47}\)

\(\Rightarrow\dfrac{12}{47}>\dfrac{11}{53}\)

1 tháng 8 2017

a) Ta có :\(\dfrac{12}{47}>\dfrac{12}{48}=\dfrac{1}{4}=\dfrac{11}{44}>\dfrac{11}{53}\)

\(\Rightarrow\dfrac{12}{47}>\dfrac{11}{53}\)

b) Ta có : \(\dfrac{456}{461}=1-\dfrac{5}{461}\)

\(\dfrac{123}{128}=1-\dfrac{5}{128}\)

\(\dfrac{5}{461}< \dfrac{5}{128}\Rightarrow1-\dfrac{5}{461}>1-\dfrac{5}{128}\)

\(\Rightarrow\dfrac{456}{461}>\dfrac{123}{128}\)

c) Ta có :\(\dfrac{12}{47}>\dfrac{12}{48}=\dfrac{1}{4}=\dfrac{19}{76}>\dfrac{19}{77}\)

=> \(\dfrac{12}{47}>\dfrac{19}{77}\)

d) Ta có : \(13A=13.\dfrac{13^{15}+1}{13^{16}+1}=\dfrac{13^{16}+13}{13^{16}+1}=\dfrac{13^{16}+1+12}{13^{16}+1}=1+\dfrac{12}{13^{16}+1}\)

\(13B=13.\dfrac{13^{16}+1}{13^{17}+1}=\dfrac{13^{17}+13}{13^{17}+1}=\dfrac{13^{17}+1+12}{13^{17}+1}=1+\dfrac{12}{13^{17}+1}\)

Ta thấy : \(\dfrac{12}{13^{16}+1}>\dfrac{12}{13^{17}+1}\Rightarrow1+\dfrac{12}{13^{16}+1}>1+\dfrac{12}{13^{17}+1}\Rightarrow\dfrac{13^{15}+1}{13^{16}+1}>\dfrac{13^{16}+1}{13^{17}+1}\)

15 tháng 4 2022

\(A=4x^2y+\dfrac{14}{15}xy^2-2xy-\dfrac{2}{3}\)            bậc : 3

\(B=2xy^2z-1\)                  bậc :4

15 tháng 4 2022

+ Thu gọn :

\(A=4x^2y+\dfrac{14}{15}xy^2-2xy-\dfrac{2}{3}\)

\(B=2xy^2z-1\)

+ Bậc

Đa thức \(A\) có 4 hạng tử :

  \(4x^2y\) có bậc \(3\)

 \(\dfrac{14}{15}xy^2\) có bậc \(3\)

 \(-2xy\) có bậc \(2\)

 \(-\dfrac{2}{3}\) có bậc \(0\)

Đa thức \(B\)\(2\) hạng tử :

   \(2xy^2z\) có bậc \(4\)

   \(-1\) có bậc \(0\)