Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trug điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: Để AMCK là hình vuông thì AM=CM
=>AM=BC/2
=>ΔABC vuông tại A
Lời giải:
a. $M,E$ là trung điểm $BC, AC$
$\Rightarrow ME$ là đường trung bình của $ABC$ ứng với $AB$
$\Rightarrow ME\parallel AB$
Mà $AB\perp AC$ nên $ME\perp AC$
$\Rightarrow \widehat{E}=90^0$
Tứ giác $ADME$ có 3 góc vuông $\widehat{A}=\widehat{D}=\widehat{E}=90^0$ nên là hcn.
b.
Tứ giác $AMKC$ có 2 đường chéo $AC, MK$ cắt nhau tại trung điểm $E$ của mỗi đường nên là hình bình hành.
Mà $MK\perp AC$ (do $ME\perp AC$)
$\Rightarrow AMKC$ là hình thoi.
c.
Gọi I là giao $DE, HM$
$DM\perp AB, AB\perp AC\Rightarrow DM\parallel AC$
$\Rightarrow \frac{DB}{AD}=\frac{BM}{MC}=1$ (định lý Talet)
$\Rightarrow DB=AD$ hay $D$ là trung điểm $AB$
$ME$ là đường trung bình ứng với cạnh AB
$\Rightarrow ME\parallel AB$ và $ME=\frac{1}{2}AB$
Mà $E$ là trung điểm của $MK$
$\Rightarrow EK\parallel AB$ và $EK=AB:2$
$\Rightarrow EK\parallel DA$ và $EK=DA$
$\Rightarrow DEKA$ là hbh
$\Rightarrow DE\parallel AK$
Mà $HM\perp AK$ nên $DE\perp HM(*)$
Lại có:
$DE\parallel AK \Rightarrow IE\parallel HK$
$\Rightarrow \frac{MI}{IH}=\frac{ME}{EK}=1$
$\Rightarrow MI=IH(**)$
Từ $(*); (**)$ suy ra $DE\perp HM$ tại trung điểm $I$ của $HM$
$\Rightarrow DE$ là đường trung trực của $HM$
$\Rightarrow DH=DM, EH=EM$
$\Rightarrow \triangle DHE=\triangle DME$ (c.c.c)
$\Rightarrow \widehat{DHE}=\widehat{DME}=90^0$
$\Rightarrow DH\perp HE$
Bài 1:
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!