K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2021

1.

Áp dụng công thức trung tuyến:

\(m_b^2+m_c^2=\dfrac{2a^2+2c^2-b^2}{4}+\dfrac{2a^2+2b^2-c^2}{4}\)

\(=\dfrac{4a^2+b^2+c^2}{4}\)

\(=\dfrac{9a^2+b^2+c^2-5a^2}{4}\)

\(=\dfrac{9\left(b^2+c^2\right)+b^2+c^2-5a^2}{4}\)

\(=5\left(\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\right)=5m_a\)

12 tháng 1 2021

A B C H

BC=a; AC=b; AB=c

Từ C dựng đường thẳng vuông góc với AB tại H

\(\frac{a}{bc}+\frac{1}{b}=\frac{1}{c}+\frac{1}{a+b-c}.\)

\(\Rightarrow a\left(a+b-c\right)+c\left(a+b-c\right)=b\left(a+b-c\right)+bc\)

\(\Rightarrow a^2+ab-ac+ac+bc-c^2=ab+b^2-bc+bc\)

\(\Rightarrow a^2-b^2-c^2+bc=0\) (*)

Ta có \(AB=c=AH+BH\Rightarrow c^2=AH^2+BH^2+2.AH.BH\) (**)

Xét tg vuông ACH có

\(AH^2=AC^2-CH^2=b^2-CH^2\)

Xét tg vuông BCH có

\(BH^2=BC^2-CH^2=a^2-CH^2\)

Thay giá trị của \(AH^2\) và  \(BH^2\) vào (**) ta có

\(c^2=b^2-CH^2+a^2-CH^2+2.AH.BH=b^2+a^2-2.CH^2+2.AH.BH\) Thay vào (*) ta có

\(a^2-b^2-\left(b^2+a^2-2.CH^2+2.AH.BH\right)+bc=0\)

\(\Rightarrow-2.b^2+2.CH^2-2.AH.BH+bc=0\)

\(\Rightarrow-2\left(b^2-CH^2\right)-2.AH.BH+bc=0\)

\(\Rightarrow-2.AH^2-2.AH.BH+bc=0\)

\(\Rightarrow bc=2.AH\left(AH+BH\right)=2.AH.AB=2.AH.c\Rightarrow b=AC=2.AH\)

Xét tg vuông ACH có

\(\cos A=\frac{AH}{AC}=\frac{AH}{2.AH}=\frac{1}{2}\Rightarrow\widehat{A}=60^o\left(dpcm\right)\)

30 tháng 12 2022

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{c^2+b^2-a^2}{2\cdot b\cdot c}=\dfrac{1}{2}\)

=>\(c^2+b^2-a^2=b\cdot c\)

=>\(\dfrac{b}{b^2-a^2}=\dfrac{c}{a^2-c^2}\)

AH
Akai Haruma
Giáo viên
3 tháng 4 2020

Lời giải:

$\frac{a}{bc}+\frac{1}{b}=\frac{1}{c}+\frac{1}{a+b-c}$

$\Leftrightarrow \frac{a+c}{bc}=\frac{a+b}{c(a+b-c)}$

$\Rightarrow (a+c)(a+b-c)=b(a+b)$

$\Leftrightarrow a^2+bc-c^2=b^2$

$\Leftrightarrow a^2=b^2+c^2-bc$

Mặt khác theo định lý cos: $a^2=b^2+c^2-2bc\cos A$

$\Rightarrow 2.\cos A=1\Rightarrow \cos A=\frac{1}{2}\Rightarrow \widehat{A}=60^0$ (đpcm)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Diện tích tam giác ABC: \(S = \frac{1}{2}ac.\sin B\)

Mà \(\widehat B = {135^o} \Rightarrow \sin B = \sin {135^o} = \frac{{\sqrt 2 }}{2}\).

\( \Rightarrow S = \frac{1}{2}ac.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 }}{4}.ac\)

Chọn D

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)

=> \(R = \frac{a}{{2\sin A}}\) => A sai.

 \(R = \frac{b}{{2\sin B}}=\frac{b}{{2\sin 135^o}}=\frac{{\sqrt 2 }}{2}b\) => B đúng.

C. \(R = \frac{{\sqrt 2 }}{2}c\) (Loại vì không có dữ kiện về góc C nên không thể tính R theo c.)

D. \(R = \frac{{\sqrt 2 }}{2}a\) (Loại vì không có dữ kiện về góc A nên không thể tính R theo a.)

Chọn B

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

A. \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\) (Loại)

Vì: Theo định lí cos ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)

Không đủ dữ kiện để suy ra \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\)

B. \(\frac{b}{{\sin A}} = \frac{a}{{\sin B}}\) (Loại)

Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \nRightarrow \frac{b}{{\sin A}} = \frac{a}{{\sin B}}\)

C. \(\sin B = \frac{{ - \sqrt 2 }}{2}\)(sai vì theo câu a, \(\sin B = \frac{{\sqrt 2 }}{2}\))

D. \({b^2} = {c^2} + {a^2} - 2ca\cos {135^o}.\)

Theo định lý cos ta có:

\({b^2} = {c^2} + {a^2} - 2ca.\cos B\) (*)

Mà \(\widehat B = {135^o} \Rightarrow \cos B = \cos {135^o}\).

Thay vào (*) ta được: \({b^2} = {c^2} + {a^2} - 2ca\;\cos {135^o}\)

=> D đúng.

Chọn D