Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 4h48p =\(\dfrac{24}{5}h\)
Gọi thời gian vòi 1 chảy một mình đầy bể là x (x>\(\dfrac{24}{5}\))
Gọi thời gian vòi 2 chảy một mình đầy bể là y( y>\(\dfrac{24}{5}\))
Trong 1 giờ thì:
-Vòi 1 chảu được \(\dfrac{1}{x}\left(bể\right)\)
-Vòi 2 chảy được \(\dfrac{1}{y}\left(bể\right)\)
-Cả hai vòi chảy được \(\dfrac{5}{24}\left(bể\right)\)
⇒PT: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\) (1)
-Nếu vòi 1 chảy trong 4 giờ, vòi 2 chảy trong 3 giờ thì cả 2 vòi chảy được \(\dfrac{3}{4}\) bể nên ta có PT: \(\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\) (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=8\\y=12\end{matrix}\right.\) (TM)
Vậy vòi 1 chảy một mình trong 8 giờ thì đầy bể
Vậy vòi 2 chảy 1 mình trong 12 giờ thì đầy bể
Cần giải HPT thì bảo mình @@
Mình nghĩ HPT dễ nên k giải luôn
Gọi thời gian chảy riêng để bể đầy vòi 1 vòi 2 lần lượt là x ; y ( x ; y > 0 )
Theo bài ra ta có :
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\end{matrix}\right.\)Đặt 1/x = u ; 1/y = v
\(\left\{{}\begin{matrix}u+v=\dfrac{5}{24}\\4u+3v=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{1}{8}\\v=\dfrac{1}{12}\end{matrix}\right.\)
Theo cách đặt x = 8 ; y = 12 (tm)
Gọi thời gian vòi I, vòi II chảy một mình đầy bể lần lượt là x, y x , y > 24 5
(đơn vị: giờ)
Mỗi giờ vòi I chảy được 1 x (bể), vòi II chảy được 1 y bể nên cả hai vòi chảy được bể
Vì hai vòi ngước cùng chảy vào một bể thì sau 4 giờ 48 phút = 24 5 h bể đầy nên ta có phương trình: 1 x + 1 y = 5 25
Nếu vòi I chảy riêng trong 4 giờ, vòi II chảy riêng trong 3 giờ thì cả hai vòi chảy được 3 4 bể nên ta có phương trình 4 x + 3 y = 3 4
Suy ra hệ phương trình
4 x + 3 4 = 3 4 1 x + 1 y = 5 24 ⇔ 4 x + 3 4 = 3 4 3 x + 3 y = 5 8 ⇔ 1 x = 1 8 1 y = 1 12 ⇔ x = 8 y = 12
(thỏa mãn)
Vậy thời gian vòi I một mình đầy bể là 8h.
Đáp án: B
Đổi 4 giờ 48 phút = 4,8 giờ
Gọi là thời gian vòi 1 chảy đầy bể,
là thời gian vòi 2 chảy đầy bể (điều kiện )
Trong 1 giờ vòi 1 chảy được số bể là: (bể)
Trong 1 giờ vòi 2 chảy được số bể là: (bể)
Hai vòi nước cùng chảy vào một bể sau 4 giờ 48 phút giờ sẽ đầy, nên trong 1 giờ hai vòi cùng chảy thì được bể, ta có phương trình:
(1)
Vì nếu vòi 1 chảy trong 3h, vòi 2 chảy trong 4h thì được bể nên ta có phương trình:
(2)
Giải hệ phương trình (1) và (2)
(thỏa mãn), (thỏa mãn)
Vậy vòi 1 chảy đầy bể trong12h và vòi 2 chảy đầu bể trong 8h.
Gọi thời gian vòi 1,vòi 2 chảy một mình đầy bể lần lượt là x,y
Theo đề, ta có: 1/x+1/y=1/4,8 và 4/x+3/y=3/4
=>x=8; y=12
Để tìm ra thời gian mỗi vòi chảy một mình thì đầy bể, ta có thể sử dụng phương pháp sau:
Tìm ra thời gian hai vòi chảy chung là bao lâu: 4 giờ 48 phút (thời gian hai vòi chảy chung để đầy bể).
Tìm ra thời gian hai vòi chảy riêng là bao lâu: 9 giờ + 5 giờ 12 phút = 14 giờ 12 phút (thời gian hai vòi chảy riêng để đầy bể)
Tìm ra thời gian mỗi vòi chảy một mình: 14 giờ 12 phút / 2 = 7 giờ 6 phút (thời gian mỗi vòi chảy một mình để đầy bể)
Vậy, mỗi vòi chảy một mình trong 7 giờ 6 phút thì đầy bể.
Gọi x(giờ) là thời gian vòi 1 chảy một mình đầy bể
y(giờ) là thời gian vòi 2 chảy một mình đầy bể
(Điều kiện: x>3; y>3)
Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)
Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)
Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{3}\)(bể)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\)(1)
Vì khi mở vòi 1 trong 20' và mở vòi 2 trong 30' thì cả hai vòi chảy được 1/8 bể nên ta có phương trình:
\(\dfrac{1}{3x}+\dfrac{1}{2y}=\dfrac{1}{8}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\\\dfrac{1}{3}\cdot\dfrac{1}{x}+\dfrac{1}{2}\cdot\dfrac{1}{y}=\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{3}\cdot\dfrac{1}{x}+\dfrac{1}{3}\cdot\dfrac{1}{y}=\dfrac{1}{9}\\\dfrac{1}{3}\cdot\dfrac{1}{x}+\dfrac{1}{2}\cdot\dfrac{1}{y}=\dfrac{1}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-1}{6}\cdot\dfrac{1}{y}=\dfrac{-1}{72}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{1}{x}+\dfrac{1}{12}=\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{3}-\dfrac{1}{12}=\dfrac{1}{4}\\\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=12\end{matrix}\right.\)(thỏa ĐK)
Vậy: Vòi 1 cần 4 giờ để chảy một mình đầy bể
Vòi 2 cần 12 giờ để chảy một mình đầy bể
Gọi thời gian vòi 1 ; 2 chảy một mình xong lần lượt là x ; y(ngày) (x;y > 4,8)
1 giờ vòi 1 chảy \(\dfrac{1}{x}\)(bể)
1 giờ vòi 2 chảy \(\dfrac{1}{y}\)(bể)
=> 1 giờ 2 vòi chảy \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4,8}\) (1)
Lại có y - x = 1 (2)
=> Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}y-x=1\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4,8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=x+1\\\dfrac{1}{x}+\dfrac{1}{x+1}=\dfrac{1}{4,8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=x+1\\x\left(x+1\right)=4,8.\left(2x+1\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}5x^2-43x-24=0\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(10x-43\right)^2=2089\\y=x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt{2089}+43}{10}\\y=\dfrac{\sqrt{2089}+53}{10}\end{matrix}\right.\)
Bài 9:
Đổi \(4h48'=\dfrac{24}{5}h\)
Gọi x(giờ) và y(giờ) lần lượt là thời gian vòi I và vòi II chảy một mình đầy bể(Điều kiện: \(x>\dfrac{24}{5};y>\dfrac{24}{5}\))
Trong 1 giờ, vòi I chảy được:
\(\dfrac{1}{x}\)(bể)
Trong 1 giờ, vòi II chảy được:
\(\dfrac{1}{y}\)(bể)
Trong 1 giờ, hai vòi chảy được:
\(1:\dfrac{24}{5}=\dfrac{5}{24}\)(bể)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\)(1)
Vì khi vòi I chảy trong 4 giờ và vòi II chảy trong 3 giờ thì hai vòi chảy được \(\dfrac{3}{4}\) bể nên ta có phương trình:
\(\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{5}{6}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{1}{x}=\dfrac{5}{24}-\dfrac{1}{12}=\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=12\end{matrix}\right.\)(thỏa ĐK)
Vậy: Vòi thứ 1 cần 8 giờ để chảy một mình đầy bể
Vòi thứ 2 cần 12 giờ để chảy một mình đầy bể
Bài 10:
Đổi \(7h12'=\dfrac{36}{5}h\)
Gọi x(giờ) và y(giờ) lần lượt là thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình(Điều kiện: \(x>\dfrac{36}{5};y>\dfrac{36}{5}\))
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được: \(1:\dfrac{36}{5}=\dfrac{5}{36}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\)(1)
Vì khi người thứ nhất làm trong 4 giờ và người thứ hai làm trong 3 giờ thì được 50% công việc nên ta có phương trình:
\(\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{1}{2}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{5}{9}\\\dfrac{4}{x}+\dfrac{3}{y}=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{18}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=18\\\dfrac{1}{x}=\dfrac{5}{36}-\dfrac{1}{18}=\dfrac{1}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=18\end{matrix}\right.\)(thỏa ĐK)
Vậy: Người thứ nhất cần 12 giờ để hoàn thành công việc khi làm một mình
Người thứ hai cần 18 giờ để hoàn thành công việc khi làm một mình