K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2019

Đặt \(x=a;\frac{1}{y}=b\Rightarrow a,b>0;a^2+b^2=1\). Quy về tìm Min \(A=ab+\frac{1}{ab}\)

Ta có: \(A=\left(4ab+\frac{1}{ab}\right)-3ab\ge2\sqrt{4ab.\frac{1}{ab}}-\frac{3}{2}\left(a^2+b^2\right)=4-\frac{3}{2}=\frac{5}{2}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}4ab=\frac{1}{ab}\\a=b\end{cases}}\Leftrightarrow\hept{\begin{cases}2ab=1\\a=b\end{cases}}\Rightarrow a=b=\frac{1}{\sqrt{2}}\) (thỏa mãn \(a^2+b^2=1\))

\(\Rightarrow x=\frac{1}{\sqrt{2}};y=\sqrt{2}\)

Vậy...

15 tháng 5 2016

Toán lớp 9

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

28 tháng 10 2019

Anh ơi em nghĩ phải lả \(+\frac{1}{x+y+z}\)thì mới đúng ạ

28 tháng 10 2019

sửa đề \(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}+\frac{1}{x+y+z}\)

                                giải

Áp dụng bđt cô si cho 3 số dương \(x,y,z\)ta có:

\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}\)

\(\Rightarrow\frac{x^2+1}{x}\ge2;\frac{y^2+1}{y}\ge2;\frac{z^2+1}{z}\ge2\)(1)

Áp dụng bđt bunhiacopxki ta có:

\(\left(x+y+z\right)^2\le\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3^2\)

Mà \(x,y,z\)nguyên dương

\(\Rightarrow x+y+z\le3\)

\(\Rightarrow\frac{1}{x+y+z}\ge\frac{1}{3}\left(2\right)\)

Lấy (1) + (2) ta được:

\(M\ge2+2+2+\frac{1}{3}\)

\(\Rightarrow M\ge\frac{19}{3}\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z\)

2 tháng 4 2016

\(\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{\left(x+y\right)^2}=4+2+5=11\)

Dấu =  xảy ra khi x =y = 1/2

2 tháng 4 2016

chứng minh sao lại ra được điều này bạn?

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}\)

25 tháng 9 2016

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

13 tháng 7 2017

đề đúng , giải sai kìa ...

1 tháng 8 2017

x^2+x+y^2+y+z^2+z<=18 suy ra (x+y+z)^2/3+x+y+z<=18

Đặt x+y+z=t thì t^2/3+t-18<=0 suy ra t^2+3t-54<=0>>>(t+9)(t-6)<=0>>>t-<=0>>>t<=6

P>=(1+1+1)^2/2x+2y+2z+3(BĐT Cauchuy-Swartch)=9/2(x+y+z)+3>=9/2.6+3=9/15=3/5

Dấu = khi x=y=z=2(tính dấu = của BĐT Cauchuy-Swartch nhé)

giống cách mình,mà đó là schwarts mà Hoàng Minh Hoàng

NV
20 tháng 1 2021

\(S=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{y}{2}+\dfrac{2}{y}+\dfrac{1}{2}\left(x+y\right)\)

\(S\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{2y}{2y}}+\dfrac{1}{2}.3=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)