K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
14 tháng 7
1.
\(A=\frac{x^2-x+2}{x-2}=\frac{x(x-2)+(x-2)+4}{x-2}=x+1+\frac{4}{x-2}\)
Với $x$ nguyên, để $A$ nguyên thì $\frac{4}{x-2}$ nguyên.
Điều này xảy ra khi $4\vdots x-2$
$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 4\right\}$
$\Rightarrow x\in \left\{3; 1; 0; 4; 6; -2\right\}$
AH
Akai Haruma
Giáo viên
14 tháng 7
2.
\(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1\)
Với $x$ nguyên thì $P=2x-1$ nguyên.
$\Rightarrow P$ nguyên với mọi giá trị $x$ nguyên.
1.
a. $A=\frac{x^3-x+2}{x-2}=\frac{x^2(x-2)+2x(x-2)+4(x-2)+10}{x-2}$
$=x^2+2x+4+\frac{10}{x-2}$
Với $x$ nguyên, để $A$ nguyên thì $\frac{10}{x-2}$ là số nguyên.
Khi $x$ nguyên, điều này xảy ra khi $10\vdots x-2$
$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 5; \pm 10\right\}$
$\Rightarrow x\in \left\{3; 1; 4; 0; 7; -3; 12; -8\right\}$
b.
\(B=\frac{2x^2+5x+8}{2x+1}=\frac{x(2x+1)+3x+8}{2x+1}=x+\frac{3x+8}{2x+1}\)
Với $x$ nguyên, để $B$ nguyên thì $3x+8\vdots 2x+1$
$\Rightarrow 2(3x+8)\vdots 2x+1$
$\Rightarrow 3(2x+1)+13\vdots 2x+1$
$\Rightarrow 13\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{\pm 1; \pm 13\right\}$
$\Rightarrow x\in \left\{0; -1; 6; -7\right\}$
Bài 2:
$P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1$
Với $x$ nguyên thì $2x-1$ cũng là số nguyên.
$\Rightarrow P$ nguyên với mọi $x$ nguyên.