K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2020

Bài 1 : 

Vì \(a,b,c\)là độ dài các cạnh của tam giác (gt)

\(\Rightarrow\hept{\begin{cases}c< a+b\\a< b+c\\b< c+a\end{cases}}\) ( theo bất đẳng thức trong tam giác )

Ta có công thức : \(\frac{a}{b}< \frac{a+m}{b+m}\left(\frac{a}{b}< 1;a,b,m>0\right)\)

\(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\left(1\right)\)

\(\frac{b}{c+a}< \frac{b+b}{a+b+c}=\frac{2b}{a+b+c}\left(2\right)\)

\(\frac{c}{a+b}< \frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\left(3\right)\)

Cộng theo vế (1) , (2) và (3) ta được :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2\left(a+b+c\right)}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\left(đpcm\right)\)

Bài 2 , để chiều nhé bạn

2 tháng 2 2020

Bài 3 : 

Cách 1 : 

\(\left|x-1004\right|-\left|x+1003\right|\)

+ ) Xét \(x< -1003\)suy ra 

\(\hept{\begin{cases}x+1003< 0\Rightarrow\left|x+1003\right|=-\left(x+1003\right)=-x-1003\\x-1004< 0\Rightarrow\left|x-1004\right|=-\left(x-1004\right)=-x+1004\end{cases}}\)

Khi đó : \(A=\left(-x+1004\right)-\left(-x-1003\right)=2007\)

+ ) Xét \(-1003\le x< 1004\). Suy ra 

\(\hept{\begin{cases}x\ge1003\Rightarrow x+1003\ge0\Rightarrow\left|x+1003\right|=x+1003\\x< 1004\Rightarrow x-1004< 0\Rightarrow\left|x-1004\right|=-\left(x-1004\right)=-x+1004\end{cases}}\)

Khi đó : \(A=\left(-x+1004\right)-\left(x+1003\right)=1-2x\)

+ ) Xét \(x\ge1004\). Suy ra 

\(\hept{\begin{cases}x-1004\ge0\Rightarrow\left|x-1004\right|=x-1004\\x+1003\ge0\Rightarrow\left|x+1003\right|=x+1003\end{cases}}\)

Khi đó : \(A=\left(x-1004\right)-\left(x+1003\right)=-2007\)

Ta thấy với \(x< -1003\)thì A đạt giá trị lớn nhất là 2007 

Vậy \(A_{max}=2007\)khi \(x< -1003\)

16 tháng 10 2016

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

Từ (1) và (2) => \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

16 tháng 10 2016

Bài 5:

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Vậy a = b = c

28 tháng 11 2016

Bài 2:

a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)

Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)

\(\Rightarrow6x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)

\(\Rightarrow4x+12=6x\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=6\)

Vậy x = 6

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)

\(=\frac{14-5}{8}=\frac{9}{8}\)

+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)

+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)

+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)

Vậy ...

c) \(5^x+5^{x+1}+5^{x+2}=3875\)

\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)

\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)

\(\Rightarrow5^x.31=3875\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

Vậy x = 3

28 tháng 11 2016

@@ good :D

9 tháng 12 2018

Bài 1:

Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c

<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1

Sai rồi em ơi 2 trường hợp cơ 

+, bằng -1

+, bằng 2

Bài 1. Chứng minh rằng với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n.\)chia hết cho 10.Bài 2. Tìm x biếta) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)Bài 3. Số A chia thành ba số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\)Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A (Chú ý: số A chia thành 3 số nghĩa là...
Đọc tiếp

Bài 1. Chứng minh rằng với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n.\)

chia hết cho 10.

Bài 2. Tìm x biết

a) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)

b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

Bài 3. Số A chia thành ba số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\)

Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A (Chú ý: số A chia thành 3 số nghĩa là 3 số được chia cộng lại bằng A).

Bài 4. Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của MA lấy E sao cho ME=MA. Chứng minh rằng:

a) AC=EB và AC song song với EB

b) Gọi I là điểm trên AC, K là một điểm trên EB sao cho AI=EK. Chứng minh I, M, K thẳng hàng.

c) Từ E kẻ EH vuông góc với BC (H thuộc BC). Biết góc HBE = 50 độ, góc MEB = 25 độ. Tính góc HEM, góc BME.

5
29 tháng 9 2016

\(\text{Bn hỏi từ từ từng câu 1 thôi}\)

\(\text{Bn hỏi thế ai mà dám làm}\)

~~~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~~

29 tháng 9 2016

Chí lí 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 sọ ghi 2 hàng khoogn đc tích tăng lê hiều hàng

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~````

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

Câu 1:a) Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(giả thiết các tỉ số đều có nghĩa)b) Tìm x biết: \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)Câu 2:a) Cho đa thức f(x)= \(ax^2+bx+c\)với a, b, c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên.b) Độ dài 3 cạnh của tam giác tỉ lệ với 2;3;4. Ba...
Đọc tiếp

Câu 1:

a) Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(giả thiết các tỉ số đều có nghĩa)

b) Tìm x biết: \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)

Câu 2:

a) Cho đa thức f(x)= \(ax^2+bx+c\)với a, b, c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên.

b) Độ dài 3 cạnh của tam giác tỉ lệ với 2;3;4. Ba đường cao tương ứng với ba cạnh đó tỉ lệ với ba số nào?

Câu 3:

Cho tam giác ABC( AB= AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM= EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

Câu 4:

Tìm số tự nhiên n để phân số \(\frac{7n-8}{2n-3}\)có giá trị lớn nhất.

Câu 5:

a) Cho a,b,c>0. Chứng tỏ rằng: M=\(\frac{a}{a+b}+\frac{b}{b+c}\frac{c}{c+a}\)không là số nguyên.

b) Cho a,b,b thoả mãn: a+b+c=0. Chứng minh rằng ab+bc+ca \(\le\)0.

Câu 6:

a) Tìm hai số dương khác nhau x, y biết rằng tổng, hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35;210 và 12.

b) Vận tốc của máy bay, ô tô và tàu hoả tỉ lệ với các số 10;2 và 1. Thời gian máy bay bay từ A đến B ít hơn thời gian ô tô chạy từ A đến B là 16 giờ. Hỏi tàu hoả chạy từ A đến B mất bao lâu?

Câu 7:

Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi \(\Delta APQ\) là 2. Chứng minh rằng góc PCQ bằng 45 độ. 

Ai biết làm thì giải dùm.

0