K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2022

1.\(\Delta OMH\perp H\) ( không đổi )

\(\Rightarrow\widehat{OMH}+\widehat{HOM}=90^o\)

Ta có: I là tâm đường tròn nội tiếp \(\Delta OMH\)

\(\Rightarrow\widehat{OMI}=\widehat{HMI}=\dfrac{\widehat{OMH}}{2}\)

\(\Rightarrow\widehat{MOI}=\widehat{HOI}=\dfrac{\widehat{MOH}}{2}\)

\(\Delta OIM\) có: \(\widehat{OIM}=180^o-\left(\widehat{OMI}+\widehat{MOI}\right)\)

                   \(\Leftrightarrow\) \(\widehat{OIM}=180^o-\left(\dfrac{\widehat{OMH}}{2}+\dfrac{\widehat{MOH}}{2}\right)\)

                     \(\Leftrightarrow\widehat{OIM}=180^o-\dfrac{90^o}{2}=135^o\)

Xét \(\Delta OIB\) và \(\Delta OIM\), có:

\(OB=OM\left(=R\right)\)

\(\widehat{MOI}=\widehat{BOI}\) ( OI là tia phân giác \(\widehat{MOH}\) )

`OI`: chung

Vậy\(\Delta OIB\) = \(\Delta OIM\) ( c.g.c )

\(\Rightarrow\widehat{OIB}=\widehat{OIM}\) ( 2 góc tương ứng )

\(\Rightarrow\widehat{OIB}=135^o\) ( không đổi )

2. \(\Delta OMH\perp H\)

\(\Rightarrow S_{OMH}=\dfrac{1}{2}.OH.MH\)

Áp dụng BĐT AM-GM, ta có:

\(\sqrt{OH^2.MH^2}\le\dfrac{OH^2+MH^2}{2}\)

\(\Leftrightarrow\dfrac{1}{2}.OH.MH\le\dfrac{1}{2}.\dfrac{OH^2+MH^2}{2}\)

\(\Leftrightarrow\dfrac{1}{2}.OH.MH\le\dfrac{1}{2}.\dfrac{OM^2}{4}\) ( pytago )

\(\Leftrightarrow S_{OMH}\le\dfrac{R^2}{4}\)

\(\rightarrow\)\(S_{OMH}\) lớn nhất là \(\dfrac{R^2}{4}\) không đổi

Dấu "=" xảy ra khi:

\(OH^2=MH^2\)

\(\Rightarrow OH=MH\)

\(\Rightarrow\Delta OMH\) vuông cân tại `H` \(\Rightarrow\widehat{MOH}=\widehat{OMH}=45^o=\widehat{MOC}\)

\(\Rightarrow\)`M` nằm giữa của \(\stackrel\frown{AB}\) thì \(S_{OMH}\) đạt GTNN là \(\dfrac{R^2}{4}\)

29 tháng 5 2022

eyy bài không biết đăng lên đây hẽ?:"))

2 tháng 1 2019

bn hãy trả lời thật zui zẻ nghen

2 tháng 1 2019

what?