K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOAM và ΔOBM có

OA=OB

\(\widehat{AOM}=\widehat{BOM}\)

OM chung

Do đó: ΔOAM=ΔOBM

b: Xét ΔOAC và ΔOBD có

\(\widehat{AOC}\) chung

OA=OB

\(\widehat{OAC}=\widehat{OBD}\)

Do đó; ΔOAC=ΔOBD

Suy ra: AC=BD

Xét ΔOAD và ΔOBC có

OA=OB

góc AOD chung

OD=OC

Do đó: ΔOAD=ΔOBC

Xét ΔKAC và ΔKBD có 

\(\widehat{KAC}=\widehat{KBD}\)

AC=BD

\(\widehat{KCA}=\widehat{KDB}\)

Do đó: ΔKAC=ΔKBD

Suy ra: KC=KD

Xét ΔOKC và ΔOKD có

OK chung

KC=KD

OC=OD

Do đó ΔOKC=ΔOKD

Suy ra: \(\widehat{COK}=\widehat{DOK}\)

hay OKlà tia phân giác của góc xOy

12 tháng 2 2020

Bạn tự vẽ hình nhé

 a, Xét tam giác AOC và tam giác BOC có;

OA=OB ( giả thiết )

góc AOC = góc BOC ( giả thiết )

OC cạnh chung

=> tam giác AOC = tam giác BOC  ( C . G .C )

=> AC = BC ( 2 cạnh tương ứng )

Do đó tam giác ACB cân tại C

b, Xét tam giác AOD và tam giác BOD có ;

OA = OB ( giả thiết )

Góc AOc = góc BOC ( giả thiết )

OD cạnh chung

=> tam giác AOD = tam giác BOD ( c.g.c )

=> góc ADO = góc BDO ( 2 góc tương ứng )

Ta có ; góc ADO + góc BDO = 180 độ ( 2 góc kề bù )

=> góc ADO = góc BDO = 180 độ : 2

=> Góc ADO = góc BDO = 90 độ

27 tháng 11 2022

a: Xét ΔOAM và ΔOBM có

OA=OB

góc AOM=góc BOM

OM chung

Do đó: ΔOAM=ΔOBM

b,c: Ta có: ΔOAM=ΔOBM

nên MA=MB

mà OA=OB

nên OM là đường trung trực của AB

=>OM vuông góc với AB

d Vì N nằm trên đường trung trực của AB

nen NA=NB

3 tháng 8 2019

O A B C D M E x y

CM: a) Ta có: OA + AB = OB (A nằm giữa O và B vì OA < OB)

           OC + CD = OD (C \(\in\)OD)

mà OA = OC (gt); AB = CD (gt) => OB = OD

Xét t/giác OCB và t/giác OAD

có: OC = OA (gt)

 \(\widehat{O}\) : chung

 OB = OD (gt)

=> t/giác OCB = t/giác OAD (c.g.c)

=> BC = AD (2 cạnh t/ứng)

b) Ta có: \(\widehat{OCB}+\widehat{BCD}=180^0\) (kề bù)

           \(\widehat{OAD}+\widehat{DAB}=180^0\) (kề bù)

mà \(\widehat{OCB}=\widehat{OAD}\) (Vì t/giác OCB = t/giác OAD) => \(\widehat{BCD}=\widehat{DAB}\)

Xét t/giác AEB và t/giác CED

có: \(\widehat{EAB}=\widehat{ECD}\) (cmt)

 AB = CD (gt)

 \(\widehat{EBA}=\widehat{CDE}\) (vì t/giác OCB = t/giác OAD)

=> t/giác AEB = t/giác CED (g.c.g)

c) Xét t/giác OBE và t/giác ODE

có: OB = OE (Cm câu a)

 EB = ED (vì t/giác AEB = t/giác CED)

 OE : chung

=> t/giác OBE = t/giác ODE (c.c.c)

=> \(\widehat{BOE}=\widehat{DOE}\) (2 góc t/ứng)

=> OE là tia p/giác của góc xOy

d) Ta có: OA = OC (gt)

=> O \(\in\)đường trung trực của AC 

Ta lại có: t/giác AEB = t/giác CED (cmt)

=> AE = CE (2 cạnh t/ứng)

=> E \(\in\)đường trung trực của AC
Mà O \(\ne\)E => OE là đường trung trực của AC

e) Ta có: OD = OB (cmt)

=> OM là đường trung trực của DB  (1)

 EB = ED (vì t/giác AEB = t/giác CED) 

=> EM là đường trung trực của DB (2)

Từ (1) và (2) => OM \(\equiv\)EM

=>  O, E, M thẳng hàng

f) Ta có: OA = OC (gt)

=> t/giác OAC cân tại O

=> \(\widehat{OAC}=\widehat{OCA}=\frac{180^0-\widehat{O}}{2}\) (1)

Ta lại có: OB = OD (cmt)

=> t/giác OBD cân tại  O

=> \(\widehat{B}=\widehat{D}=\frac{180^0-\widehat{O}}{2}\) (2)

Từ (1) và (2) => \(\widehat{OAC}=\widehat{B}\)

mà 2 góc này ở vị trí đồng vị

=> AC // BD