K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2022

\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)

\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)

\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)

23 tháng 8 2020

d: \(y=\left(5m-3\right)x+4m-3\)

d' :\(y=-4x-1\)     

\(d//d'\Leftrightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\)      

\(\hept{\begin{cases}5m-3=-4\\4m-3\ne-1\end{cases}}\)          

\(\hept{\begin{cases}5m=-4+3\\4m\ne-1+3\end{cases}}\)           

\(\hept{\begin{cases}5m=-1\\4m\ne2\end{cases}}\)                      

\(\hept{\begin{cases}m=-\frac{1}{5}\\m\ne\frac{1}{2}\end{cases}}\)       

\(\Rightarrow m=-\frac{1}{5}\)

23 tháng 8 2020

Alice Bản Quyền bạn nhớ đổi chiếu điều kiện của m nhé.

Thay x=2 và y=-1 vào (d),ta được:

2(m^2-5m+1)+2m-6=-1

=>2m^2-10m+2+2m-6+1=0

=>2m^2-8m-3=0

=>\(m=\dfrac{4\pm\sqrt{22}}{3}\)

NV
28 tháng 1 2022

Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà đường thẳng đã cho đi qua

\(\Rightarrow\) Với mọi m ta luôn có:

\(\left(2m^2+m+4\right)x_0-\left(m^2-m-1\right)y_0-5m^2-4m-13=0\)

\(\Leftrightarrow\left(2x_0-y_0-5\right)m^2+\left(x_0+y_0-4\right)m+4x_0+y_0-13=0\)

\(\Rightarrow\left\{{}\begin{matrix}2x_0-y_0-5=0\\x_0+y_0-4=0\\4x_0+y_0-13=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=3\\y_0=1\end{matrix}\right.\)

Vậy khi m thay đổi thì đường thẳng luôn đi qua điểm cố định có tọa độ \(\left(3;1\right)\)

NV
11 tháng 2 2020

Giả sử điểm cố định có tọa độ \(\left(x_0;y_0\right)\)

a/ \(\left(-5m+4\right)x_0+\left(3m-2\right)y_0+3m-4=0\) \(\forall m\)

\(\Leftrightarrow-5mx_0+3my_0+3m+4x_0-2y_0-4=0\)

\(\Leftrightarrow m\left(-5x_0+3y_0+3\right)+4x_0-2y_0-4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}-5x_0+3y_0+3=0\\4x_0-2y_0-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=3\\y_0=4\end{matrix}\right.\)

b/ \(\left(2m^2+m+4\right)x_0-\left(m^2-m-1\right)y_0-5m^2-4m+3=0\) \(\forall m\)

\(\Leftrightarrow m^2\left(2x_0-y_0-5\right)+m\left(x_0+y_0-4\right)+4x_0+y_0+3=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_0-y_0-5=0\\x_0+y_0-4=0\\4x_0+y_0+3=0\end{matrix}\right.\)

Không tồn tại \(x_0;y_0\) thỏa mãn, chắc bạn ghi nhầm đề

18 tháng 7 2016

giúp mình

a: Để đây là hàm số bậc nhất thì (3m-1)(2m+3)<>0

hay \(m\in\left\{\dfrac{1}{3};-\dfrac{3}{2}\right\}\)

c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-5m+6=0\\m^2+mn+6n^2< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;3\right\}\\m^2+mn+6n^2< >0\end{matrix}\right.\)

Trường hợp 1: m=2

\(\Leftrightarrow4+2n+6n^2< >0\)

Đặt \(6n^2+2n+4=0\)

\(\text{Δ}=2^2-4\cdot6\cdot4=4-96=-92< 0\)

Do đó: \(4+2n+6n^2< >0\forall n\)

Trường hợp 2: m=3

\(\Leftrightarrow9+3n+6n^2< >0\)

Đặt \(6n^2+3n+9=0\)

\(\text{Δ}=3^2-4\cdot6\cdot9=9-216=-207< 0\)

Do đó: \(6n^2+3n+9\ne0\forall n\)

Vậy: m=2 hoặc m=3