Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x, y, z lần lượt là số học sinh đạt loại giỏi một môn, hai môn và ba môn. Lập sơ đồ Ven liên hệ giữa các tập hợp, ta có hệ phương trình:
x + y + z = 45 − 7 x + 2 y + 3 z = 20 + 18 + 17 z = 5 ⇔ x = 26 y = 7 z = 5.
Vậy số học sinh đạt loại giỏi một môn là 26 em.
Đáp án B
Số học sinh giỏi cả 3 hoặc không giỏi môn nào:
7+5=12(hs)
Tổng số hs giỏi chỉ một môn hoặc 2 trong 3 môn là:
45 - 12= 33(hs)
Số học sinh chỉ giỏi 1 môn
(20+17+18 - 5 x 3) - 33= 22 (học sinh)
đề văn nha đề thi khảo sát học kì 2 năm nay của trường mình luôn nha
Tổng số học sinh giỏi là: 45 – 13 = 32
Số học sinh chỉ giỏi Văn là: 32 – 25 = 7
Số học sinh chỉ giỏi Toán là: 32 – 17 =15
Số học sinh giỏi cả hai môn là: 32 – 7 – 15 = 10.
Đáp án: A
Tổng số học sinh giỏi là: 45 – 13 = 32
Số học sinh chỉ giỏi Văn là: 32 – 25 = 7
Số học sinh chỉ giỏi Toán là: 32 – 17 =15
Số học sinh giỏi cả hai môn là: 32 – 7 – 15 = 10.
Giá trị tần suất của giá trị 5 là:
72 400 . 100 % = 18%
Chọn C
Lớp 10A có số học sinh là:
\(30+20+15-\left(3+4+2\right)=56\) (bạn)
Có thể giải bài toán cụ thể hơn như sau: Trong hình vẽ sau, hình tròn tâm A biểu diễn tập hợp các học sinh học tiếng Anh; hình tròn tâm B biểu diễn tập hợp các học sinh học tiếng Pháp và hình tròn tâm C biểu diễn tập hợp các học sinh học tiếng Trung. Ta cũng dùng kí hiệu \(\left|A\right|\) để chỉ số phần tử của tập hợp A. Như vậy giả thiết của bài toán cho \(\left|A\right|=30;\left|B\right|=20;\left|C\right|=15;\left|A\cap B\cap C\right|=0;\left|A\cap B\backslash C\right|=\left|A\cap B\right|=2;\)
\(\left|B\cap C\backslash A\right|=\left|B\cap C\right|=4;\left|C\cap A\backslash B\right|=\left|C\cap A\right|=3\).
Từ đó số học sinh của lớp là \(30+20+15-\left(2+4+3\right)=56\)