K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

 Kẻ .BN vuông AD, BM vuông CD 
Xét tam giác vuông BNA và BMD có 
+ AB = BC 
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70* 
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn) 
Suy ra : BN = BM => BD là phân giác góc D (đpcm) 
b/ 
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35* 
=>ADC = 70* 
Do ADC + BAD = 180* => AB song song CD 
VÀ BCD = ADC =70* 
=> tứ giác ABCD là htc (đpcm)

31 tháng 12 2015

 Kẻ .BN vuông AD, BM vuông CD 
Xét tam giác vuông BNA và BMD có 
+ AB = BC 
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70* 
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn) 
Suy ra : BN = BM => BD là phân giác góc D (đpcm) 
b/ 
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35* 
=>ADC = 70* 
Do ADC + BAD = 180* => AB song song CD 
VÀ BCD = ADC =70* 
=> tứ giác ABCD là htc (đpcm)

5 tháng 7 2015

nam cao copy tại https://vn.answers.yahoo.com/question/index?qid=20120905071415AAmqNM6 

5 tháng 7 2015

a, Kẻ .BN vuông AD, BM vuông CD 
Xét tam giác vuông BNA và BMD có 
+ AB = BC 
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70* 
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn) 
Suy ra : BN = BM => BD là phân giác góc D (đpcm) 
b/ 
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35* 
=>ADC = 70* 
Do ADC + BAD = 180* => AB song song CD 
VÀ BCD = ADC =70* 
=> tứ giác ABCD là htc (đpcm)

19 tháng 9 2021

a﴿ Kẻ BN vuông AD, BM vuông CD

Xét tam giác vuông BNA và BMD có

: AB = BC ; góc BNA = 180 độ

‐ góc BAD = 70 độ

nên góc BAN = góc BCD = 70 độ

=> tam giác BMD = tam giác BND ﴾cạnh huyền ‐ góc nhọn﴿

=> BN = BM => BD là phân giác góc D

b﴿ Nối B vs D, do AB = AD nên tam giác ABD cân tại A

khi đó góc ADB = ﴾180 ‐110) :2= 35 độ

=> góc ADC = 70 Do góc ADC + góc BAD = 180 => AB // CD

Và góc BCD = góc ADC = 70 độ

=> ABCD là hình thang cân

4 tháng 7 2023

đồng minh chăng=)))

27 tháng 8 2016

a﴿ Kẻ BN vuông AD, BM vuông CD

Xét tam giác vuông BNA và BMD có

: AB = BC ; góc BNA = 180 độ

‐ góc BAD = 70 độ

nên góc BAN = góc BCD = 70 độ

=> tam giác BMD = tam giác BND ﴾cạnh huyền ‐ góc nhọn﴿

=> BN = BM => BD là phân giác góc D

b﴿ Nối B vs D, do AB = AD nên tam giác ABD cân tại A

khi đó góc ADB = ﴾180 ‐110) :2= 35 độ

=> góc ADC = 70 Do góc ADC + góc BAD = 180 => AB // CD

Và góc BCD = góc ADC = 70 độ

=> ABCD là hình thang cân

11 tháng 9 2016

a﴿ Kẻ BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
: AB = BC ; góc BNA = 180 độ
‐ góc BAD = 70 độ
nên góc BAN = góc BCD = 70 độ
=> tam giác BMD = tam giác BND ﴾cạnh huyền ‐ góc nhọn﴿
=> BN = BM => BD là phân giác góc D
b﴿ Nối B vs D, do AB = AD nên tam giác ABD cân tại A
khi đó góc ADB = ﴾180 ‐110﴿ :2= 35 độ
=> góc ADC = 70 Do góc ADC + góc BAD = 180 => AB // CD
Và góc BCD = góc ADC = 70 độ
=> ABCD là hình thang cân

24 tháng 8 2019

  A B C D

Theo bài ra ta có tứ giác ANCD là hình thang cân
=> AD = BC
Mà AB = AD
=> AD = BC = AB
=> tam giác ABC có AB = Bc=> ABC là tam giác cân
=> góc BAC = góc BCA  (1)
Vì AB//CD => góc BAC = góc ACD  (2)
Từ (1) và (2)
=> góc BCA = góc ACD
=> AC là đường phân giác của góc C
=> đpcm

2) a) Kẻ BN vuông AD , BM vuông CD 

Xét tam giác vuông BNA và BMD ta có :

AB = BC ; góc BNA = \(180^o-\widehat{BAD}=70^o\)nên góc BAN = BCD = \(70^o\)

\(\Rightarrow\)tam giác BMD = tam giác BND ( cạnh huyền - góc nhọn )

\(\Rightarrow\)\(BN=BM\Rightarrow BD\)là tia phân giác của góc D

b) Nối B với D do AB = AD nên tam giác ABD cân tại A khi đó góc ADB = ( \(180^o-110^o\)) : 2= \(35^o\)

\(\Rightarrow\widehat{ADC}=70^o\)

do góc ADC + góc BAD = \(180^o\Rightarrow\)AB// CD

Và góc BCD = góc ADC= \(70^o\)

Suy ra ABC là hình thang cân

19 tháng 9 2021

a﴿ Kẻ BN vuông AD, BM vuông CD

Xét tam giác vuông BNA và BMD có

: AB = BC ; góc BNA = 180 độ

‐ góc BAD = 70 độ

nên góc BAN = góc BCD = 70 độ

=> tam giác BMD = tam giác BND ﴾cạnh huyền ‐ góc nhọn﴿

=> BN = BM => BD là phân giác góc D

b﴿ Nối B vs D, do AB = AD nên tam giác ABD cân tại A

khi đó góc ADB = ﴾180 ‐110) :2= 35 độ

=> góc ADC = 70 Do góc ADC + góc BAD = 180 => AB // CD

Và góc BCD = góc ADC = 70 độ

=> ABCD là hình thang cân

8 tháng 7 2016

Help Me !!! ^^

19 tháng 9 2021

a﴿ Kẻ BN vuông AD, BM vuông CD

Xét tam giác vuông BNA và BMD có

: AB = BC ; góc BNA = 180 độ

‐ góc BAD = 70 độ

nên góc BAN = góc BCD = 70 độ

=> tam giác BMD = tam giác BND ﴾cạnh huyền ‐ góc nhọn﴿

=> BN = BM => BD là phân giác góc D

b﴿ Nối B vs D, do AB = AD nên tam giác ABD cân tại A

khi đó góc ADB = ﴾180 ‐110) :2= 35 độ

=> góc ADC = 70 Do góc ADC + góc BAD = 180 => AB // CD

Và góc BCD = góc ADC = 70 độ

=> ABCD là hình thang cân

                                                                                            Giải

a, Kẻ BN \(\perp\)AD, BM\(\perp\)CD

Xét \(\Delta\)BNA và \(\Delta\)BMD, có : 

+ AB=AC

+ \(\widehat{\text{BNA}}\)=180* - \(\widehat{\text{BAD=}}\)70* nên \(\widehat{\text{BAN}}\)=\(\widehat{\text{BCD=}}\)70*

\(\Rightarrow\Delta\)BNA = \(\Delta\)BMD (ch-gn)

19 tháng 9 2021

a﴿ Kẻ BN vuông AD, BM vuông CD

Xét tam giác vuông BNA và BMD có

: AB = BC ; góc BNA = 180 độ

‐ góc BAD = 70 độ

nên góc BAN = góc BCD = 70 độ

=> tam giác BMD = tam giác BND ﴾cạnh huyền ‐ góc nhọn﴿

=> BN = BM => BD là phân giác góc D

b﴿ Nối B vs D, do AB = AD nên tam giác ABD cân tại A

khi đó góc ADB = ﴾180 ‐110) :2= 35 độ

=> góc ADC = 70 Do góc ADC + góc BAD = 180 => AB // CD

Và góc BCD = góc ADC = 70 độ

=> ABCD là hình thang cân

11 tháng 8 2016

Bài mình làm cực chi tiết nên có một số chỗ viết tắt: gt:giả thiết,  dhnb:dấu hiệu nhận biết,   đ/n:định nghĩa,   cmt:chứng minh trên,   t/c: tính chất

3. a) Vì tam giác ABC vuông cân ở A (gt)=> góc ACB=45 độ.

         tam giác ACE vuông cân ở E (gt)=> góc EAC=45 độ.

mà góc EAC và góc ACB ở vị trí so le trong.

Từ 3 điều trên=> AE//BC (dhnb) => AECB là hình thang (đ/n) mà góc AEC=90 độ (tam giác ACE vuông cân) => AECB là hình thang vuông.

b) Vì AECB là hình thàng vuông(cmt) mà góc AEC= 90 độ (tam giác ACE vuông cân). => góc ACE=90 độ.

Có: góc ABC= 45 độ (cmt).

tam giác AEC vuông cân ở E (gt)=> góc EAC=45 độ (t/c) mà góc BAC+ góc EAC= góc BAE và góc BAC= 90 độ (tam giác BAC vuông cân)=> góc BAE= 90 độ=45 độ= 135 độ.

Gọi AD là đường trung trực tam giác ABC=> AD=BD=BC=1/2BC=1/2*2=1 cm (chỗ này là tính chất tam giác vuông: trung tuyến ứng với                                                                                 cạnh huyền thì bằng nửa cạnh huyền nhé). [đây là điều thứ nhất suy ra được]

                                                                         => AD vông góc với BC. [đây là điều thứu hai suy ra được]

Xét tam giác ADC vuông tại D (AD vuông góc BC) và tam giác AEC vuông tại E (gt) có: Cạnh huyền AC chung. Góc EAC= góc BCA (cmt) => tam giác ADC= tam giác CEA (ch-gn) => AD= EC ( 2 cạnh tương ứng) mà AD=1cm(cmt) => AE=1cm.

Xét  tam giác ADB vuông (AD vuông góc BC) có: AD2+ BD2 = AB2 ( định lí Pytago)

                                                                                       12   +  12    =AB2 => 1+1=AB2 => Ab bằng căn bậc hai cm.

12 tháng 10 2021

QUỲNH LỚP 7C TRƯỜNG VÕ NGUYÊN GIẤP HẢ