Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: \(\left(x-5\right)^{88}\ge0\)
\(\left(x+y+3\right)^{496}\ge0\)
\(\Rightarrow\left(x-5\right)+\left(x+y+3\right)^{496}\ge\) ( Đó là điều đương nhiên )
Vậy: \(x;y\in R\)
\(\left(x-5\right)^{88}+\left(x+y+z\right)^{496}\ge0\)0
Dấu "=" xảy ra kih và chỉ khi \(\hept{\begin{cases}\left(x-5\right)^{88}\\\left(x+y+3\right)^{496}\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\5+y+3=0\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=-8\end{cases}}\)
\(=\frac{\left(2^{31}.3^{16}\right).2^{19}.3^{45}+\left(2^{31}.3^{16}\right).2^{59}}{\left(2^{31}.3^{16}\right).2^{20}.3^{45}+\left(2^{31}.3^{16}\right)}\\ =\frac{\left(2^{31}.3^{16}\right).\left(2^{19}.3^{45}+2^{59}\right)}{\left(2^{31}.3^{16}\right).\left(2^{20}.3^{45}+1\right)}\\ =\frac{2^{19}.3^{45}+2^{59}}{2^{20}.3^{45}+1}\)
\(2^{19}.\frac{3^{45}+2^{40}}{2^{20}.3^{45}+1}\)
\(\frac{2^{50}.3^{61}+2^{90}.3^{16}}{2^{51}.3^{61}+2^{31}.3^{16}}=\frac{2^{50}.3^{16}+3^{45}+2^{50}+2^{40}.3^{16}}{2^{31}+3^{20}+2^{31}.3^{16}}\)
\(=556758,4881\)
=\(\frac{2^{50}.+2^{90}}{2^{51}+2^{31}}=\frac{2^{19}}{2^{39}}=\frac{1}{1048576}\)
K nha
a. Giá trị nhỏ nhất của A=\(\sqrt{2}+\frac{3}{11}\)
không có giá trị lớn nhất
b. Giá trị lớn nhất của B là \(\frac{5}{7}\) khi x=5 không có GTLN
3 . ( 5x + 15 ) + x - 11 = 98
=>3(5x+15)+x=109
=>15x+45+x=109
=>16x=64
=>x=4
\(3-\frac{x}{5}-x=\frac{x}{x-1}\)
\(\Rightarrow\frac{15\left(x-1\right)}{5\left(x-1\right)}-\frac{x\left(x-1\right)}{5\left(x-1\right)}-\frac{5x\left(x-1\right)}{5\left(x-1\right)}=\frac{5x}{5\left(x-1\right)}\)
\(\Rightarrow15\left(x+1\right)-x\left(x-1\right)-5x\left(x-1\right)=5x\)
\(\Rightarrow15x+15-x^2+x-5x^2+5x=5x\)
Bạn tự làm tiếp theo ha
\(\frac{3-x}{5-x}=\frac{x}{x+1}\)
\(\left(3-x\right)\left(x+1\right)=\left(5-x\right)x\)
\(3\left(x+1\right)-x\left(x+1\right)=5x-x^2\)
\(3x+3-x^2-x=5x-x^2\)
\(2x+3-x^2=5x-x^2\)
\(2x+3=5x\)
\(3=5x-2x\)
\(3x=3\)
\(x=1\)
Vậy x = 1
Do \(\left(x+\frac{1}{2}\right)^2\ge0;\left(y-\frac{1}{2}\right)^{1998}\ge0\)
Mà theo đề bài, \(\left(x+\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^{1998}=0\)
=> \(\hept{\begin{cases}\left(x+\frac{1}{2}\right)^2=0\\\left(y-\frac{1}{2}\right)^{1998}=0\end{cases}}\)=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{1}{2}\end{cases}}\)
Vì (x+1/2)^2 và (y-1/2)^1998 luôn lớn hơn hoặc bằng 0
=>(x+1/2)^2=0 và (y-1/2)^1998=0
x+1/2=0 và y-1/2=0
x=-1/2 và y=1/2
Vậy vời x=-1/2 ;y=1/2 thì (x+1/2)^2+(y-1/2)^1998=0
Có A(x) + B(x)= 5x2 +5x +1
Suy ra: B(x)= (5x2 +5x +1) - A(x)
(Xong rồi thay đa thức A(x) vào rồi tính là ra đó nha!!!!)
5x+1-5x=500
(5x-5x)+1=500
0.5x=499
Sai đề
5x + 1 - 5x = 500
=> 5x - (-1) - 5x = 500
=> 5x - 5x - (-1) = 500
=> 0 - (-1) = 500
=> 1 = 500
=> Sai đề